

Proposed Rezoning for Residential Subdivision West Gable, the Gables Box Hill

Traffic Impact Assessment Report

Prepared for: Allam Property Group & Stockland

December 2022

Report No: PT22014r01_Final

TABLE OF CONTENTS

1.	Exe	ecutive Summary4
2.	Intr	oduction5
3.	Bad	ckground Report Review6
3	.1	GHD Transport & Access Study – Box Hill / Box Hill Industrial Precincts – February 20116
3 2	.2 012	Box Hill / Box Hill Industrial Precincts Post Exhibition Traffic Report GHD Transport – April 9
3	.3	Box Hill North Traffic Impact Assessment Report - GTA Consultants July 201311
3 C	.4 Decer	Box Hill North Transport & Access Assessment Addendum Report - GTA Consultants mber 2013
3 R	.5 load	Traffic Signal Warrant Analysis - Old Pitt Town Road / Valetta Drive / Mount Carmel - Stanbury Traffic Planning - May 202224
4.	Exi	sting Development / Conditions
4	.1	Site Location
4	.2	Existing Site Traffic Generation
4	.3	Classification Criteria
4	.4	Existing Road Network
4	.5	Existing Traffic Flows
4	.6	Existing Intersection Operating Conditions
4	.7	Public Transport
4	.8	Cycle Network
5.	Fut	ure Road Network
5	.1	Contributions Plan No.16 Gables Precinct Transport Provisions
5	.2	Future Road Network Planning
6.	The	e Proposed Development
7.	Pot	ential Traffic Impacts
7	.1	Introduction40
7	.2	Development Traffic Generation
7	.3	Trip Distribution
7	.4	Future Public Transport Network42
7	.5	Future Public Transport
8.	Со	nclusions

9.	Appendix A – 2022 Intersection Counts	53
10.	Appendix B – SIDRA Outputs	54
11.	Appendix C - Plans of Potential Development Arrangement	55

List of Figures

Figure 1 - Box Hill & Box Hill Industrial Precincts Figure 2 - Box Hill & Box Hill Industrial Precinct GHA TIA Report 2036 Forecast Intersection Flows Locations Figure 3 - Box Hill & Box Hill Industrial Precinct GHA TIA Report Modelled Intersection Locations Figure 4 - Box Hill & Box Hill Industrial Precincts Recommended Road Network Figure 5 – GHD Post Exhibition Traffic Report Revised Forecast AM Peak 2036 Traffic Flows Figure 6 - GHD Post Exhibition Traffic Report Revised Forecast PM Peak 2036 Traffic Flows Figure 7 – Box Hill North TIA Report Area of Assessment Boundaries Figure 8 – Box Hill North Adopted Distribution of Trips Figure 9 – 2036 Box Hill / Box Hill Industrial + Box Hill North AM Peak Period Mid Block Volume vs Capacity Figure 10 – 2036 Box Hill / Box Hill Industrial + Box Hill North PM Peak Period Mid Block Volume vs Capacity Figure 11 - 2036 Forecast Intersection Operating Conditions Figure 12 - 2036 Forecast AM Peak Intersection Operating Conditions Figure 13 - 2036 Forecast PM Peak Intersection Operating Conditions Figure 14 – GTA Box Hill North Traffic Report 2036 Intersection Assessment Numbering Figure 15 – Intersection 1 - Dual Lane Roundabout - Old Pitt Town Road / BHN Access Road East (not constructed) Figure 16 – Intersection 2 - Dual Lane Roundabout - Old Pitt Town Road / Terry Road T Intersection (not constructed) Figure 17 - Intersection 3 - Dual Lane Roundabout - Old Pitt Town Road / BHN Access Road West (not constructed) Figure 18 – Intersection 4 – T Intersection Old Pitt Town Road / Mount Carmel Road (not constructed) Figure 19 – Intersection 5 - Dual Lane Roundabout - Old Pitt Town Road / Boundary Road (now replaced with traffic signal proposal) Figure 20 – Intersection 6 – Priority Controlled Intersection – Boundary Road / Cataract Road (now constructed as 'seagull' type intersection) Figure 21 – Intersection 7 – T Intersection – Boundary Road / Red Gables Road Figure 22 – Intersection 5 – Signalised Intersection – Old Pitt Town Road / Boundary Road Figure 23 – DCP 2018 Recommended Box Hill North Road Connections to Old Pit Town Road Figure 24 – Stanbury Traffic Planning Warrant Assessment Report February 2022 Intersection Counts Figure 25 – Stanbury Traffic Planning Forecast Intersection Flows by Year to 2036 Figure 26 – Location of Development Figure 27 – Location of Development Relative to Box Hill North ILP Figure 28 – Existing Intersection Arrangements – Old Pitt Town Road / Valetta Drive Figure 29 – Existing Intersection Arrangements – Boundary Road / Cataract Road Figure 30 – Existing Intersection Arrangements – Boundary Road / Cataract Road Figure 31 – Council Agreed Locations of Intersection Counts Figure 32 – Existing Bus Stops Within Convenient Walking Distance to Development Site Figure 33 – Existing / Proposed Bicycle Network Near Development Site Figure 34 – Proposed Signalised Intersection Arrangement of Old Pitt Town Road / Valletta Drive & Old Pitt Town Road / Fontana Drive Figure 35 – Potential Development No. Dwellings & Peak Hour Traffic Generation by Location Figure 36 – Assumed Trip Distribution by Routes of Travel for Each Development Area Figure 37 – Adopted The Gables 2036 Traffic Generation (prior to factoring by 42%) to Account for Omitted Cataract Rd Figure 38 – Adopted Split of Existing Traffic Flows Between Cataract Road and Red Gables Road Figure 39 – 2036 The Gables Traffic Generation Accounting for Existing Traffic Volumes at Boundary Road / Cataract Road and Boundary Road / Red Gables Road Figure 40 – 2036 The Gables Traffic Generation Factored by 42% Figure 41 – 2036 Boundary Rd / Red Gables Rd & Boundary Rd / Cataract Rd Baseline Traffic Flows Figure 42 – Proposed Development AM Peak Outbound Traffic Generation by Route Figure 43 – Proposed Development AM Peak Inbound Traffic Generation by Route Figure 44 – Proposed Development PM Peak Outbound Traffic Generation by Route Figure 45 – Proposed Development PM Peak Outbound Traffic Generation by Route Figure 46 – Potential Slip Lanes from Valetta Drive at Old Pitt Town Road Figure 47 – The Gables Adopted Future Bus Network Figure 48 – Proposed Development Walking Distances to Future Bus Network

List of Tables

Table 1 - Forecast Development Growth by Year for Box Hill / The Gables

- Table 2 Existing Weekday Peak Period Volumes in vicinity of site (veh/hr)
- Table 3 Level of Service Criteria
- Table 4 Existing Weekday AM / PM Intersection Operating Conditions
- Table 5 Existing vs 2036 Weekday AM / PM Intersection Operating Conditions With & Without Development
- Table 6 Valetta Drive Slip Lane 2036 Weekday AM / PM Intersection Operating Conditions With & Without Development

List of Photos

1. Executive Summary

This traffic impact assessment report has assessed the potential traffic impacts of the proposed rezoning of lands known as West Gables. The report has considered all current public and draft traffic modelling assessments of surrounding precincts along with those undertaken for The Gables precinct.

It is observed that additional yield of the Box Hill / Box Hill Industrial and The Gables Precincts have been approved by the Department of Planning since the preparation of the area wide traffic impact assessments for the Box Hill / Box Hill Industrial and The Gables Precincts without any update to these existing reports.

However, this report has fully accounted for this additional yield in the assessment of future traffic conditions at intersections close to the subject site as agreed with Hills Shire Council through consultation on the scope of the traffic assessment to inform this proposal.

This report has provided a robust assessment of future traffic conditions accounting for *all additional* development within the Box Hill / Box Hill Industrial and The Gables Precincts.

This assessment has confirmed that the proposed road infrastructure upgrades surrounding the development would be adequate to accommodate the potential additional traffic generated by the proposal on the immediate surrounding road network.

These identified changes as detailed in the contributions plan include:

- Upgrade of Boundary Road to collector road status
- Signalisation of the intersection of Boundary Road / Old Pitt Town Road
- Signalisation of the intersection of Old Pitt Town Road / Valetta Drive
- Upgrade of Old Pitt Town Road to provide two (2) travel lanes in each direction.

Further road improvements to provide a public benefit would include provision of a separate left slip turn lane from Old Pitt Town Road west into Valetta Drive and a left turn slip lane from Valetta Drive into Old Pitt Town Road.

The proposed development also provides the opportunity for improved pedestrian / cycle connections to Boundary Road with the extension of the shared pedestrian / cycleway along the riparian corridor (northern side of Sundowner Drive) to Boundary Road and its proposed shared pedestrian / cycleway on the eastern side as proposed as part of the upgrade of Boundary Road.

The site would be well served now and into the future by the proposed expanded bus servicing network of The Gables with *all* dwellings located within 400m walking distance to local / regional bus services.

Overall, the potential traffic impacts of the proposal are considered acceptable and would not result in detrimental operating conditions of the immediate surrounding road network.

2. Introduction

This report has been prepared on behalf of Allam Property Group & Stockland to present findings of a traffic and parking assessment of the proposed rezoning of lands known as West Gable within the Gables development, Box Hill to provide residential housing.

The study has assessed existing traffic conditions, parking demands, access arrangements, future traffic conditions, service vehicle provision and design compliance.

The remainder of the report is set out as follows:

- Section 3 provides a background report review;
- Section 4 describes the existing traffic and parking conditions;
- Section 5 summarises the future transport network in and around the site:
- Section 6 summarises the proposed development;
- Section 7 reviews the potential traffic impacts of the proposal; and
- Section 8 presents the conclusions

3. Background Report Review

The following presents a summary of the reports undertaken to date which are considered applicable to this proposal. Of note, there has been significant area wide multi model traffic modelling assessments to underpin both the approvals of the Box Hill / Box Hill Industrial Precinct and Box Hill North (now The Gables) precinct.

3.1 GHD Transport & Access Study – Box Hill / Box Hill Industrial Precincts – February 2011

The Box Hill / Box Hill Industrial Precincts forms part of the North West Growth Corridor and has been subject to a number of historical studies to inform the planning for the precinct. On traffic matters, the GHD report¹ prepared for the Department of Planning provided a full assessment of the development of Box Hill / Box Hill Industrial Precincts as a whole and provided an infrastructure delivery plan for the road network to service the ultimate precinct.

This assessment included area wide modelling of the *full potential yield* of the precinct proposal and recommendations for access connections to the existing road network (including Windsor Road). Further, the report included the development of the road hierarchy and major road intersection controls within the precinct.

The Box Hill and Box Hill Industrial Precinct assessed in the report is shown below in Figure 1:

Figure 1 - Box Hill & Box Hill Industrial Precincts

Map source: http://www.gcc.nsw.gov.au/media/Pdf/BoxHillnewsletterjuly/10pt2.pdf

¹ Box Hill & Box Hill Industrial Precincts – Transport and Access Study – GHD 2011

The multi modal traffic impact assessment report included both a mid block capacity assessment of key roads in and immediately surrounding the precinct along with SIDRA intersection analysis of a number of locations. Of note, the report *did not* include any mid block assessment of Old Pitt Town Road or SIDRA intersection assessments of any intersections along Old Pitt Town Road which formed the northern boundary of the Box Hill Precinct. This was despite 2036 AM / PM peak volumes published in the report all key intersections in Old Pitt Town Road as shown below from the report.

The reporting / assessment culminated in the following recommended proposed main road network of the Box Hill / Box Hill Industrial Precinct as detailed in Figure 4 below.

Of note, the report did not include any specific recommended upgrade of Old Pitt Town Road.

3.2 Box Hill / Box Hill Industrial Precincts Post Exhibition Traffic Report GHD Transport – April 2012

Following exhibition of the ILP, a further traffic assessment was undertaken by GHD to gauge the potential impacts of an <u>overall reduced yield</u> for the Box Hill Precinct. The key elements of the changes noted in the report are provided below:

Changes to the quantum of residential development: The ILPD has been modified since public display to include a **reduction** in the quantum of residential land use and redistribution of residential land use throughout the precinct.

Comments have been received from Transport for NSW (TfNSW) regarding the road reserve and cross section requirements for Terry Road, Mt Carmel Road and the Water Lane to Mason Road Link through the Box Hill Town Centre (referred to in TfNSW submission as Withers Road to George Street).

Comments have been received on the spatial requirements for Old Pitt Town Road and whether there is any requirement to widen Old Pitt Town Road by the planning horizon beyond the existing two-lane corridor.

The overall quantum of dwellings has reduced by 525 dwellings over the whole precinct.

As confirmed above, TfNSW requested the modelling assessment to be expanded to assess the future impacts on Old Pitt Town Road specifically when assessing the reduction in overall potential yield.

However, the post exhibition GHD traffic report *did not* include any specific intersection analysis of intersections along Old Pitt Town Road but focused only on a mid block assessment of the road using the following 2036 AM / PM peak hour flows.

Figure 5 - GHD Post Exhibition Traffic Report Revised Forecast AM Peak 2036 Traffic Flows

Figure 6 - GHD Post Exhibition Traffic Report Revised Forecast PM Peak 2036 Traffic Flows

3.3 Box Hill North Traffic Impact Assessment Report – GTA Consultants July 2013

This traffic impact assessment report for the area at the time known as Box Hill North, now known as The Gables included consideration of the following:

- existing and base year (2036) traffic conditions surrounding the site;
- the traffic generating characteristics of the planning proposal; and
- the transport impact of the planning proposal on the surrounding road network.

Further, the transport assessment undertaken identified what transport infrastructure improvements were required in addition to those already planned and funded through the North West Growth Centre planning framework to accommodate the development of the Box Hill North planning proposal.

The area included in this traffic impact assessment report is shown below:

Figure 7 – Box Hill North TIA Report Area of Assessment Boundaries

As shown above in **Figure 7**, The Gables development was to include three (3) intersection connections to Old Pitt Town Road along with three (3) further intersection connections with Boundary Road north of Old Pitt Town Road.

The report adopted (Figure 8) the following distribution of trips generated by the precinct having regard to:

- configuration of the arterial road network in the immediate vicinity of the area;
- collectors roads between the area and the arterial road network;
- connections to future public transport infrastructure (i.e. commuter car parking at Cudgegong Station on the North West Rail Line);
- surrounding employment centres, retail centres and schools in relation to the area; and
- configuration of access points to the area.

Figure 8 – Box Hill North Adopted Distribution of Trips

The report included both a midblock capacity assessment and intersection capacity assessment having regard to the 2036 traffic conditions forecast in the Box Hill / Box Hill Industrial Traffic Report and combined with the additional traffic generated by the Box Hill North (The Gables) proposal. The 2036 midblock future conditions for the AM and PM peak estimated by the report are shown below:

Figure 9 – 2036 Box Hill / Box Hill Industrial + Box Hill North AM Peak Period Mid Block Volume vs Capacity

Figure 10 – 2036 Box Hill / Box Hill Industrial + Box Hill North PM Peak Period Mid Block Volume vs Capacity

After considering the road network improvements proposed surrounding the site at Box Hill North including both Old Pitt Town Road and Boundary Road, the report found the following 2036 intersection operating conditions taking into account the traffic generation of Box Hill North, Box Hill and Box Hill Industrial Precincts.

1 m	Proposed Treatment	Degree of Saturation		Average Delay (sec)		Level of Service	
ntersection		MA	PM	AM	PM	AM	PM
Old Pitt Town Road/ Boundary Road	Dual-Lane Roundabout	0.96	0.73	33	47	C:	В
Old Pitt Town Road/ BHN Access Road West	Dual-Lane Roundabout	0.51	0.43	8	9	Á	A
Old Pitt Town Road/ Terry Road	Dual-Lane Roundabout	0.52	0.66	IJ	24	В	В
Old Pitt Town Road/ BHN Access Road East	Dual-Lane Roundabout	0.35	0.36	0	8	A	A
Annangrove Road/ The Water Lane	Provide Left Turn Slip Lane (South Leg)	0.80	0.94	20	27	В	С
Old Pitt Town Road/ Nelson Road/ Edward Road	N/A ¹ .	0.77	0.50	12	11	D	D

Figure 11 - 2036 Forecast Intersection Operating Conditions

Notes: 1. No specific works proposed at this intersection for Box Hill North. Improvement works are proposed as part of Box Hill Contribution Plan

Figure 12 - 2036 Forecast AM Peak Intersection Operating Conditions

Figure 13 - 2036 Forecast PM Peak Intersection Operating Conditions

As shown above, the intersection of Old Pitt Town Road / Valetta Drive (now constructed) was not included at the time of the above assessment as the lands subject to this proposal were not included in the rezoning application.

The report recommended the following infrastructure improvements:

- Capacity improvements to existing and proposed intersections with additional turning lanes and / or increased lane storage (particularly along Windsor Road);
- Intersection treatment upgrades, i.e., priority controls (stop give way signage) to roundabouts or traffic signals (i.e., Old Pitt Town Road);
- Road widening, clearway treatments and condition improvements; and
- Bus accessible routes through Box Hill North and bus stop facilities.

Further, *all* intersections which would serve the Box Hill North precinct were assumed to be dual lane roundabouts as shown below including the existing intersection of Old Pitt Town Road / Boundary Road. Further, the intersections with Boundary Road were assumed to be priority controlled intersection with a single lane of travel in each direction in Boundary Road. The adopted intersection arrangements by location for **2036** conditions are presented below. For reference the intersections in the vicinity of the proposed development have been numbered.

Figure 16 – Intersection 2 - Dual Lane Roundabout - Old Pitt Town Road / Terry Road T Intersection (not constructed)

Figure 20 - Intersection 6 - Priority Controlled Intersection - Boundary Road / Cataract Road (now

As shown above, a number of the assumed intersection arrangements of the GTA Box Hills North traffic report have not been undertaken as originally proposed. In particular, the access roads from Box Hill North to Old Pitt Town Road have been reduced from three (3) intersections to two (2) intersections. Further, the reduction in intersections has resulted in combined four way intersections with both Terry Road and the future Mount Carmel Road extension (soon to be complete).

Of further note, whilst the GTA report did include modelled intersection configurations for Boundary Road / Red Gables Road and Boundary Road / Cataract Road, no information was provided in the report on what forecast volumes was used to model these intersections and what resulting future Level of Service would occur at these intersections under priority control. Further, the report *did not* account for the potential future arrangement of Boundary Road which has the capacity to provide two (2) travel lanes in each direction. There was *no 2036 forecast traffic flows* for Boundary Road included in the report which can be referred to in this assessment. The only information provided for 2036 conditions was forecast trip generation at these intersections (no baseline 2036 volumes) as shown in Appendix A of the GTA report.

The GTA report did not include *any* forecast traffic generation in Appendix A of the report for the intersection of Boundary Road / Cataract Road which was omitted entirely despite the fact that the report included a modelled intersection arrangement for this intersection but with no volume information (SIDRA volumes) detailed in the report.

Therefore, the existing intersection arrangements have been modelled for future conditions to be consistent with all reporting to date. It is noted that the current intersection arrangement of Boundary Road / Cataract Road includes a seagull type intersection which has been maintained in the future scenario testing.

3.4 Box Hill North Transport & Access Assessment Addendum Report - GTA Consultants December 2013

Following a review of the initial transport & access assessment report prepared by GTA consultants, Transport for NSW sought revision of the original report to account for a number of the assumptions which in turn had been modified.

The addendum report included changes to the potential traffic generation of Box Hill North overall to account for a potential greater shift to public transport over and above the assumed 8% PT mode share along with a change to assumed traffic generation rates.

In terms of future year (2036) intersection modelling, the *only* change to the assumed intersection arrangements was the intersection of Old Pitt Town Road / Boundary Road which was assumed to operate as a traffic signal-controlled intersection instead of the previously assumed dual lane roundabout arrangement. The resulting signalised intersection arrangement is shown below.

Figure 22 - Intersection 5 - Signalised Intersection - Old Pitt Town Road / Boundary Road

It is noted above that the right turn bays in all legs of the intersection were assumed not has specific length turning bays but as *full length* lanes which is unlikely.

Overall, it is observed that both the traffic and access assessment reports for Box Hill / Box Hill Industrial and Box Hill North assumed a number of intersection configurations in Old Pitt Town Road which ultimately have not been undertaken.

That is, the resulting DCP 2018 road network rationalised intersection connections to Old Pitt Town Road to two (2) four way intersections with Terry Road and the future Mount Carmel Road extension as shown below:

Figure 23 – DCP 2018 Recommended Box Hill North Road Connections to Old Pit Town Road

3.5 Traffic Signal Warrant Analysis – Old Pitt Town Road / Valetta Drive / Mount Carmel Road – Stanbury Traffic Planning – May 2022

In consultation with Hills Shire Council, Council provided a copy of this traffic signal warrant assessment report for a new signalised intersection Old Pitt Town Road / Valetta Drive / Mount Carmel Road. The purpose of this assessment is to analyse planned, existing and likely future traffic demands as well as undertake a traffic signal warrant and operational performance assessment of the subject junction.

Of note this was the first report to account for the DCP 2018 road network serving Box Hill whilst also including the traffic generation forecasts of *all* historical area wide traffic impact assessment reports for Box Hill / Box Hill Industrial / Box Hill North precincts.

It is further noted that this traffic report accounted for the *increase* in yield of Box Hill. This is referenced below:

The GHD Post Exhibition Report stated that the Box Hill Growth Centre was originally envisaged to accommodate 9,600 residential dwellings and a population of 30,000.

The Box Hill Contributions Plan however states the following:

"In May 2017 the Department of Planning published a revised population projection for the Box Hill Precinct of 42,483 persons (13,276 dwellings) and is reflective of the ongoing impacts of the Department's Housing Diversity Package which took effect in August 2014 (where minimum residential densities were applied to land within Growth Centre Precincts without any associated maximum residential density). The population and dwelling estimate is derived from the North West Growth Centre Social Infrastructure Assessment (September 2015) prepared for the then Department of Planning and Environment by GHD.

In August 2019, Council received advice from the Minister for Planning and Public Spaces which required this Contributions Plan to be amended to reflect a total population of 42,483 persons at the conclusion of the plan. This version of the plan has been updated to reflect the requirements of the Minister."

As a result of the above diversity and density amendments. The alteration in density represents an increase of approximately 3,676 dwellings (or approximately 38%) over and above that previously assessed and a population increase of approximately 12,483 (of approximately 42%) over and above that previously assessed.

To inform the warrant assessment, intersection counts were undertaken in February 2022 to gauge current conditions. These are shown below:

Figure 24 – Stanbury Traffic Planning Warrant Assessment Report February 2022 Intersection Counts

The above indicated a westbound direction on Old Pitt Town Road of 657 vehicles in the weekday AM peak hour with 605 vehicles in the weekday PM peak hour.

These recorded traffic flows in Old Pitt Town Road where *similar* to the forecast **2036** traffic flows in Old Pitt Town Road estimated in the GHD traffic report for Box Hill / Box Hill Industrial Precincts (See Figure 5 and Figure 6). On this matter, the report² made the following statements:

This is likely the result of a number of factors:

- As outlined in Section 3.1, the alteration in density represents an increase of approximately 3,676 dwellings (or approximately 38%) over and above that previously assessed (total of 13,276 dwellings) and a population increase of approximately 12,483 (of approximately 42%) over and above that previously assessed;
- The Box Hill North Precinct (now called Gables) was not rezoned at the time that the Box Hill and Box Industrial Precinct was rezoned. As outlined in the Gables Contribution Plan, a total of 4,600 dwellings and 13,498 people are expected to live to the north of the subject junction;

² Traffic Signal Warrant Analysis – Old Pitt Town Road / Valetta Drive / Mount Carmel Road – Stanbury Traffic Planning – May 2022

- The nearby North Kellyville Precinct was originally envisaged to accommodate 4,500 residential dwellings in conjunction with education and local activity centres. Subsequent planning amendments now expect a total of 7,200 dwellings in this Precinct, an increase of 60%.
- The nearby Vineyard Precinct Stage 1 was originally envisaged to accommodate 2,3213 residential dwellings in conjunction with education and a local activity centre. Subsequent planning amendments now expect a total of 2,459 dwellings in this Precinct, an increase of 6%4.
- As outlined in Section 3.2, Santa Sophia College was constructed on land originally envisaged as a town centre. This has resulted in an expected higher traffic volume for this area than originally envisaged. In 2021 there were 135 students enrolled in the primary school and 320 enrolled in the high school.

To provide an estimate of overall future traffic growth having regard to the above approved changes to development yield in and around Box Hill, the report included the following growth projection by year estimated from the NSW Open Data for 2019 Travel Zones

PROJECTED POULATION GROWTH RATE OF BOX HILL AND THE GABLES							
Year	Occupied Private Dwellings	Yearly Growth Rate	Cumulative Growth Rate				
2022	4,617	100%	100%				
2023	5,129	112%	112%				
2024	5,640	111%	125%				
2025	6,152	110%	137%				
2026	6,664	109%	150%				
2027	7,266	108%	162%				
2028	7,868	109%	177%				
2029	8,469	108%	192%				
2030	9,071	108%	206%				
2031	9 <mark>,</mark> 673	107%	221%				
2032	10,099	107%	236%				
2033	10,524	104%	246%				
2034	10,950	104%	256%				
2035	11,375	104%	267%				
2036	11,801	104%	277%				

Table 1 - Forecast Development Growth by Year for Box Hill / The Gables

The above approach allowed an estimate of future traffic generation noting 2022 counts reflecting the above occupied private dwellings in 2022. The resulting forecast traffic generation of the intersection of Old Pitt Town Road / Valetta Drive / Mount Carmel Road

The 2036 forecasts for Valletta Drive have been used in the assessment of potential traffic impacts below.

Positive Traffic Pty Ltd

December 2022

4. Existing Development / Conditions

The following presents a summary of existing site and traffic conditions.

4.1 Site Location

The proposed lands subject to this rezoning application are located within the Box Hill North (The Gables) development and to date were not rezoned as part of the approved rezoning for this precinct.

The development includes three (3) separate parcels of lands. The lands are bounded by Old Pitt Town Road in the south, Boundary Road in the west, Red Gables Road in the north and existing residential development of The Gables in the east. The location of the development site is shown below in Figure 26.

Figure 26 – Location of Development

The location of the development sites in the context of the approved ILP arrangements for the Box Hill North Precinct is shown below in Figure 27.

Figure 27 – Location of Development Relative to Box Hill North ILP

It should be noted that the proposed road connections above to Old Pitt Town Road which included three (3) new intersections now includes only two (2) intersection connections as approved which is discussed further below in **Section 3** of this report.

4.2 Existing Site Traffic Generation

For the purpose of this modelling assessment and noting the majority of the lands subject to this application include greenfield sites, it has been assumed that the existing lands do not generate any peak hour traffic generation.

4.3 Classification Criteria

It is usual to classify roads according to a road hierarchy in order to determine their functional role within the road network. Changes to traffic flows on the roads can then be assessed within the context of the road hierarchy. Roads are classified according to the role they fulfil and the volume of traffic they should appropriately carry. The RTA has set down the following guidelines for the functional classification of roads.

- Arterial Road typically a main road carrying over 15,000 vehicles per day and fulfilling a role as a major inter-regional link (over 1,500 vehicles per hour)
- Sub-arterial Road defined as secondary inter-regional links, typically carrying volumes between 5,000 and 20,000 vehicles per day (500 to 2,000 vehicles per hour)

- Collector Road provides a link between local roads and regional roads, typically carrying between 2,000 and 10,000 vehicles per day (250 to 1,000 vehicles per hour). At volumes greater than 5,000 vehicles per day, residential amenity begins to decline noticeably.
- Local Road provides access to individual allotments, carrying low volumes, typically less than 2,000 vehicles per day (250 vehicles per hour).

4.4 Existing Road Network

<u>Old Pitt Town Road</u> – in its current form is an north-south collector road linking Annangrove Road in the east with Pitt Town in the west. Across the site frontage, the road includes a single travel lane in each direction and unformed shoulders. The intersection of Old Pitt Town Road / Boundary Road is controlled by a single lane roundabout. The street has a posted speed limit of 60km/hr. The road has been identified for significant upgrade in the future which is discussed further below in Section 3.

<u>Boundary Road</u> – is also a collector road linking Windsor Road in the west with the suburbs of Cattai / Maraylya in the east. It includes a single lane of travel in each direction and unformed shoulders. In the vicinity of the intersection with Old Pitt Town Road it includes a posted of 60 km/h. The intersection of Old Pitt Town Road currently includes a single lane roundabout control which has been identified for upgrade to traffic signals in the future.

<u>Valetta Drive</u> – is a local collector road forming a four (4) way priority-controlled intersection with Old Pitt Town Road and the future extension of Mount Carmel Road. The road includes a posted speed limit of 50km/hr and a central landscaped median on approach to Old Pitt Town Road allowing for two (2) travel lanes in each direction. The existing arrangements of the intersection at the time of preparing this report is shown below in **Figure 28**.

Figure 28 - Existing Intersection Arrangements - Old Pitt Town Road / Valetta Drive

© Nearmap

<u>Cataract Road</u> – is a local road connecting to Boundary Road in the west via a seagull intersection arrangement and extending east to Fontana Drive. The road includes a single travel lane in each direction, a carriageway width of some 11.5m and unrestricted parallel parking on both sides of the street. The existing intersection arrangements of Boundary Road / Cataract Road at the time of preparing this report are shown below in Figure 29.

Figure 29 - Existing Intersection Arrangements - Boundary Road / Cataract Road

© Nearmap

<u>Red Gables Road</u> – is a local road with a future connection to Boundary Road in a priority controlled arrangement. At the time of preparing this report, the road remained closed at Boundary Road subject to final construction. The road includes a single travel lane in each direction, a carriageway width of some 11.5m and unrestricted parallel parking on both sides of the street. The existing intersection arrangements of Boundary Road / Red Gables Road at the time of preparing this report are shown below in Figure 30.

Figure 30 – Existing Intersection Arrangements – Boundary Road / Cataract Road

4.5 Existing Traffic Flows

Having regard to the historical traffic impact assessment reporting undertaken to date for the Box Hill / Box Hill Industrial Precinct and The Gables Precinct and in consultation with representatives of the Hills Shire Council traffic section, AM / PM peak hour intersection counts were undertaken at the following locations:

Figure 31 – Council Agreed Locations of Intersection Counts

Copies of all intersection counts are provided in Appendix A of this report.

The peak flows by direction in each street at each intersection are summarised below. 4

		AM		PM	
Road	Location	NB/EB	SB/WB	NB/EB	SB/WB
Boundary Rd	North of Cataract Rd	186	248	217	186
	South of Cataract Rd	245	350	229	222
	North of Old Pitt Town Rd	246	347	227	227
	South of Old Pitt Town Rd	304	416	301	275
Cataract Rd	East of Boundary Rd	170	213	52	76
Old Pitt Town Rd	West of Boundary Rd	237	144	126	190
	East of Boundary Rd	286	204	209	248
	West of Valletta Dr	313	171	183	263
	East of Valletta Dr	607	419	277	377
Valletta Dr	North of Old Pitt Town Road	363	409	166	146

From Table 2 it can be seen that existing flows on surrounding roads are in generally in line with their classification. Of further note, the traffic volumes in Old Pitt Town Road west of Valletta Drive are *significantly* lower in the PM peak compared to those recorded in February 2022 in the Stanbury Traffic report.

4.6 Existing Intersection Operating Conditions

All intersections surveyed have been analysed using the Sidra Intersection analysis program. Sidra Intersection determines the average delay that vehicles encounter, the degree of saturation of the intersection, and the level of service. The degree of saturation is the ratio of the arrival rate of vehicles to the capacity of the approach. Sidra Intersection provides analysis of the operating conditions which can be compared to the performance criteria set out in Table 3.

Level of Service	Average Delay per Vehicle (secs/veh)	Signals & Roundabouts	Give Way & Stop Signs
А	less than 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays & spare capacity	Acceptable delays & Spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	43 to 56	Operating near capacity	Near capacity & accident study required
E	57 to 70	At capacity; at signals, incidents will cause excessive delays Roundabouts require other control mode	At capacity, requires other control mode
F	> 70	Extra capacity required	Extreme delay, traffic signals or other major treatment required

Table 3 – Level of Service Criteria

Adapted from RTA Guide to Traffic Generating Developments, 2002.

For roundabouts and priority intersections, the reported average delay is for the individual movement with the highest average delay per vehicle. At signalised intersections, the reported average delay is over all movements.

The existing weekday and weekend day intersection operating conditions are presented in Table 4. Average delay is expressed in seconds per vehicle.

		Morning Peak		Evening Peak	
Intersection	Control	Av Delay	LOS	Av Delay	LOS
Boundary Rd / Cataract Rd	Priority	8.7	А	9.7	А
Boundary Rd / Old Pitt Town Rd	Roundabout	13.1	А	11.5	А
Old Pitt Town Rd / Valletta Drive	Priority	23.3	В	16.3	

Table 4 - Existing Weekday AM / PM Intersection Operating Conditions

Avg Delay (sec/veh) is over all movements at signals, and for worst movement at priority and roundabouts

From Table 4 it is noted that agreed intersections surveyed currently operate at a satisfactory level of service during both the AM and PM peak periods on a weekday with spare capacity.

SIDRA outputs are provided in Appendix B of this report.

4.7 Public Transport

The development is located within a convenient walking distance to a large number of local and regional bus services which will continue to expand in terms of their offerings as The Gables, Box Hill and Box Hill Industrial Precincts evolve. The proximity of existing bus stops to the proposed development lands are shown below in Figure 32.

Figure 32 – Existing Bus Stops Within Convenient Walking Distance to Development Site

The bus routes which serve the above bus stops along Old Pitt Town Road, Boundary Road and internally within The Gables development include:

• Route 643 – The Gables to Rouse Hill & return

- Route 740 Box Hill to Rouse Hill & return
- Route 741 Oakville to Riverstone via Maraylya & return

The future public transport network which will serve The Gables precinct is discussed further in **Section 3** of this report.

4.8 Cycle Network

The delivery of The Gables precinct and Box Hill Precinct has also resulted in a significant expanding provision of bicycle network facilities in accordance with the approval requirements of both precincts. The provision of cycling facilities is guided by the Hills Shire Bike Plan exhibited in August 2022

In terms of the cycle network in close proximity to the subject lands of this rezoning proposal, the existing network is shown below in Figure 33.

5. Future Road Network

As confirmed above, the future road network / intersection arrangements serving The Gables where the proposed development is located has evolved over time. These changes include both rationalisation of access points along Old Pitt Town Road and upgrades of intersections over and above those which were identified in supporting traffic impact assessment reports prepared for the Box Hill / Box Hill Industrial / The Gables precincts.

5.1 Contributions Plan No.16 Gables Precinct Transport Provisions

On the matter of the provision of transport infrastructure, the existing contributions plan for the Gables Precinct states and requires the following:

A traffic and transport analysis titled "Box Hill North – Transport and Access Impact Assessment" was prepared by GTA in July 2013 ("Traffic Report"). This report establishes the need for infrastructure works resulting from development of the Gables Precinct, namely:

- capacity improvements to existing intersections with additional turning lanes and / or increased lane storage;
- intersection treatment upgrades (i.e. priority controls to roundabouts or traffic
- signals);
- road widening, clearway treatments and condition improvements; and
- bus accessible routes through Gables and bus stop facilities.

Transport Works	Description
Road Upgrades	
Boundary Road (north)	Resurfacing of Pavement between Old Pitt Town Road and Maguires Road
Old Pitt Town Road	Widening of Old Pitt Town Road between ${\sim}150$ metres west of BHN Access Road West and ${\sim}150$ metres east of BHN Access Road East.
Road Upgrade (Collector Road 2)	Upgrade of Red Gables Road
Road Upgrade (Collector Road 5)	Upgrade of Janpieter Road (north) south of Red Gables Road
Boundary Road	Additional upgrade works (removing crest)
New Roads	
New Road (Collector Road 1)	Between Boundary Road and drainage reserve
New Road (Collector Road 3)	Between "Collector Road 1" and Old Pitt Town Road (east)
New Road (Collector Road 4)	Between "Collector Road 1" and Red Gables Road
Intersections	
Boundary Road / Maguires Road	Give-way control: Localised widening, turn bays

Transport Works	Description
Boundary Road / opp. Hession Rd	Give-way control: Localised widening, turn bays
Boundary Road / Red Gables Road	Give-way control: Localised widening, turn bays
Boundary Road / Cataract Road	Give-way control: Localised widening, turn bays
Boundary Road / Old Pitt Town Rd	Convert to dual-lane roundabout
Old Pitt Town Road / BHN Access Road West	Provide new dual-lane roundabout
Old Pitt Town Road / Terry Road	Upgrade existing intersection to a dual (2) lane roundabout
Annangrove Road/ The Water Lane/ Withers Road	Provide left turn/slip lane
Mountable Roundabouts	Six new mountable roundabouts at various Locations
Bus Stops	
Bus stops along D2	Provide 12 additional bus stops along Route D2
Bus stops along D3	Provide 16 additional bus stops along Route D3
Cycleways	
Cycleway 1	Adjoining open space and water management
Cycleway 2	Adjoining open space and water management
Cycleway 3	Adjoining open space and water management

5.2 Future Road Network Planning

Further the above requirements of the contributions plan, Hills Shire Council has identified (as noted in the Stanbury Traffic Signal Warrant Assessment report described above) that *both* current intersections in Old Pitt Town Road (Valletta Drive / Fontana Drive, would *not* include a dual lane roundabout arrangements but signalised intersection control.

The anticipated intersection configuration is shown below.

Figure 34 – Proposed Signalised Intersection Arrangement of Old Pitt Town Road / Valletta Drive & Old Pitt Town Road / Fontana Drive

The above arrangements show two (2) travel lanes in each direction in Old Pitt Town Road which will be adopted for the assessment of 2036 conditions presented below in **Section 7**.

As also identified in the contributions plan, Boundary Road north of Old Pitt Town Road past the site frontage would be widened to two (2) travel lanes in each direction with a shared pedestrian / cycle pathway provided on its eastern side.

6. The Proposed Development

The key components of the proposed development and associated public works are described below.

- Rezoning of remnant lands within The Gables precinct to provide a total of **1,200 1,300** potential residential lots.
- Construction of an internal road system which links in a number of locations to the existing local road network adjacent.
- Left in / left out local road connection to Old Pitt Town Road between Boundary Road and Valetta Drive.
- Extension of the existing shared pedestrian / cycle path over the riparian corridor providing the missing link between Sundowner Parkway and Bloomsdale Circuit.
- Allowance for the widening of Boundary Road to provide two (2) travel lanes in each direction along with a shared pedestrian / cycle pathway along its eastern side as identified in contributions plan.
- Local parks / greenspace areas.

Plans of the potential development arrangement which could be achieved in the rezoning proposal is provided in **Appendix C** of this report.

7. Potential Traffic Impacts

7.1 Introduction

The following presents an assessment of the potential traffic impacts of the proposal using the Roads and Traffic Authority Guide to Traffic Generating Developments standard approach.

7.2 Development Traffic Generation

In line with the consistent assumptions to date for potential traffic generation, both the Box Hill / Box Hill Industrial traffic impact report and the Box Hill North (The Gables) traffic impact assessment report adopted the following traffic generation rates by type.

Land Use	Dwellings	Traffic Generation Rate	Traffic Generation
Low Density Residential	3,280	0.85 trips/ dwelling	2,788
Medium Density Residential	615	0.50 trips/ dwelling	308
High Density Residential	205	0.24 trips/ dwelling	49
Total	4,100		3,145

Table 4.5: Peak Hour Traffic Generation (No Trip Containment or Mode Shift)

As per the Box Hill and Box Hill Industrial – Transport and Access Study (GHD, 2011) trip containment (20%) and mode shift to public transport (8%) have been applied to the peak hour traffic generation estimates as shown in Table 4.5 for the purpose of assessing the external traffic implications of the Box Hill North development proposal.

The early development of the Box Hill North town centre will facilitate trip containment within Box Hill North with a proportion of retail, educational, social and employment related trips with origins and destinations within Box Hill North.

Table 4.6 shows the estimated external peak period traffic generation for the Box Hill North development proposal. These estimates have been used in the assessment of the external road network operation and infrastructure improvements.

Land Use	Dwellings	External Traffic Generation Rate	Traffic Generation
Low Density Residential	3,280	0.61 trips/ dwelling	2,002
Medium Density Residential	615	0.36 trips/ dwelling	221
High Density Residential	205	0.17 trips/ dwelling	35
Total	4,100		2,258

Table 4.6: External Peak Hour Traffic Generation of Box Hill North

As a conservative estimate of the traffic generation of the proposal, the maximum anticipated potential yield of **1,300** dwellings has been adopted for all modelling. Therefore, the proposed 1,300 potential dwellings (*all* assumed to be low density) would generate in the order of **793 trips** in the AM and PM peak periods two way. Of these, 80% (635) trips would be outbound in the AM peak and 20% (158) would be inbound. The reverse would occur in the PM peak.

7.3 Trip Distribution

The distribution of trips by precinct would mirror that assumed in the Box Hill North (The Gables) traffic impact assessment report which is shown above in Figure 8.

The number of dwellings by each development area and the resulting number of peak hour trips two way is shown below in Figure 35.

The resulting assumed routes of travel by each development area within the proposed development is shown below in Figure 36.

Figure 36 - Assumed Trip Distribution by Routes of Travel for Each Development Area

7.4 Future Public Transport Network

The traffic impact assessment of 2036 conditions have assumed the following:

- Adopt Stanbury report 2036 forecast flows for Old Pitt Town Road / Valletta Drive as baseline 2036 conditions as these forecasts account for the 42% increase in yield in the precinct.
- Factor 2022 count of Old Pitt Town Road / Boundary Road traffic flows recorded in 2022 by 277% to mirror 2036 conditions modelled in Stanbury Road and account for all approved growth of surrounding precincts (average 12.6% growth per annum).
- Factor forecast traffic generation of GTA report for Red Gables Road / Boundary by 42% to account for increase yield of The Gables now approved for traffic coming into and out of The Gables precinct.
- Adopt a 2% per annum growth of traffic flows in Boundary Road north of Old Pitt Town Road as a 2036 baseline traffic demands in Boundary Road at Red Gables Road / Cataract Road as all growth would be generally attributed to The Gables generated traffic and thus increases from other development would be minimal.
- 50/50 split in routes of travel generated by trips generated to Old Pitt Town Road east shared between the new left in / left out intersection and Valetta Drive.
- Adopt the same traffic generation forecasts of the GTA report for the intersection of Boundary Road / Red Gables Road at the intersection of Boundary Road / Cataract Road to account for the fact that this intersection was omitted from the traffic

generation forecasts of the report. This provides a conservative estimate of future traffic generation at this intersection.

- Also factor these volumes for Boundary Road / Cataract Road by 42% (entry / exit volumes) to account for now approved yield increase in Box Hill.
- Discount existing entry / exit volumes at Cataract Road / Boundary Road from 2036 forecast traffic generation to account for existing now constructed development prior to factoring of the forecasts by 42%.
- Signalised intersection of Old Pitt Town Road / Boundary Road (Figure 22 with 100m right turn bays) and Old Pitt Town Road / Valletta Drive (Figure 34) in place.
- Boundary Road upgraded to two (2) travel lanes in each direction.
- Old Pitt Town Road upgraded to two (2) travel lanes in each direction.
- Mount Carmel Road extension would occur by year 2024 prior to occupation of any development within the proposal.

The resultant 2036 forecast traffic generation of The Gables precinct prior to the factoring by 42% which accounts for the omitted Cataract Road is shown below in Figure 37 – Adopted The Gables 2036 Traffic Generation (prior to factoring by 42%) to Account for Omitted Cataract Rd

2036 AM Peak Traffic Generation

2036 PM Peak Traffic Generation

The adopted split of existing traffic flows at Cataract Road / Boundary Road to the closed at the time of surveys Boundary Road / Red Gables Road intersection is shown below.

Figure 38 – Adopted Split of Existing Traffic Flows Between Cataract Road and Red Gables Road

The calculated difference plot of 2036 traffic generation of The Gables precinct which accounts for existing traffic flows split above is shown below in Figure 39.

The factored traffic generation by 42% of the difference plot volumes shown above in Figure 39 is presented below in Figure 40.

December 2022

Figure 40 – 2036 The Gables Traffic Generation Factored by 42%

The overall 2036 baseline traffic flows by direction at the intersections of Boundary Road / Red Gables Road and Boundary Road / Cataract Road are presented below in Figure 41.

Figure 41 - 2036 Boundary Rd / Red Gables Rd & Boundary Rd / Cataract Rd Baseline Traffic Flows

The resultant additional trips over and above those estimated for 2036 conditions by route of travel are presented below.

Figure 42 – Proposed Development AM Peak Outbound Traffic Generation by Route

Figure 43 - Proposed Development AM Peak Inbound Traffic Generation by Route

Figure 44 – Proposed Development PM Peak Outbound Traffic Generation by Route

Figure 45 – Proposed Development PM Peak Outbound Traffic Generation by Route

The resulting future 2036 intersection operating conditions within and without the proposed rezoning for the agreed intersections surveyed is shown below in Table 5.

December 2022

		Morning	Peak	Evening I	Peak
Intersection	Control	Av Delay	LOS	Av Delay	LOS
2022					
Boundary Rd / Cataract Rd	Priority	8.7	А	9.7	А
Boundary Rd / Old Pitt Town Rd	Roundabout	13.1	А	11.5	А
Old Pitt Town Rd / Valletta Drive	Priority	23.3	В	16.3	В
2036 – No Development					
Boundary Rd / Red Gables Rd**	Priority	12.4	А	53.6	E
Boundary Rd / Cataract Rd	Priority	15.6	В	25.7	В
Boundary Rd / Old Pitt Town Rd	Signals	38.8	С	30.0	С
Old Pitt Town Rd / Valletta Drive*	Signals	54.1	D	27.7	В
2036 With Development					
Boundary Rd / Red Gables Rd***	Priority	13.0	А	66.1	E
Boundary Rd / Cataract Rd	Priority	21.5	В	32.2	С
Boundary Rd / Old Pitt Town Rd	Signals	50.5	D	32.6	С
Old Pitt Town Rd / Valletta Drive	Signals	100	F	35.6	С

Table 5 – Existing vs 2036 Weekday AM / PM Intersection Operating Conditions With & Without Development

Avg Delay (sec/veh) is over all movements at signals, and for worst movement at priority and roundabouts

*This 2036 level of service <u>does not mirror</u> that found in the Stanbury traffic report for the same 2036 volumes / intersection arrangement / signal phasing where it found **LOS C** operating conditions

** 42% increase to 2036 forecast traffic flows into / out of The Gables as forecast in GTA report

*** 42% increase to 2036 forecast traffic flows into / out of The Gables as forecast in GTA report + development traffic

From Table 5 it is noted that in 2036 all surrounding intersections would operate at a satisfactory level of service *without* the traffic generation of the proposed development except the intersection of Boundary Road / Red Gables Road whereas a priority controlled intersection would be considered as failing at Level of Service E.

It is noted that the existing 'seagull' intersection arrangement at Boundary Road / Cataract Road would continue to operate at a satisfactory level of service in 2036 following *full* development of the subject site.

At full development of the site the intersection of Boundary Road / Red Gables Road as a basic priority controlled intersection would continue to operate at capacity (albeit with little change to resulting delay of the worst vehicle movement). Thus. The adoption of the same seagull type intersection at Boundary Road / Red Gables Road would resolve this near capacity intersection operation with or without the development.

However, despite mirroring the 2036 traffic flows, traffic signal phasing adopted in the Stanbury Traffic Planning Warrant Assessment report for the signalisation of the intersection of Old Pitt Town Road / Valletta Drive, it was not possible to mirror the forecast AM Peak level of service conditions at the intersection.

The proposed development which includes lands on the north-east and north-west corner of the intersection of Old Pitt Town Road / Valletta Drive which in turn enables the opportunity for the provision of a left turn slip lane which would greatly benefit the future intersection operating conditions given the AM / PM peak left turn volumes expected. A further right turn bay would be provided to provide additional capacity for westbound traffic turning into Valetta Drive. The revised potential arrangement of the intersection in 2036 is shown below.

Figure 46 - Potential Slip Lanes from Valetta Drive at Old Pitt Town Road + Additional Right Turn Lane

The enhancements of the intersection include:

- Second right turn lane from Old Pitt Town Road into Valletta Drive.
- Left turn slip lane from Valetta Drive into Old Pitt Town Road east.
- Left turn slip lane from Old Pitt Town Road west into Valetta Drive.

Adopting the slip lane arrangement above would result in the following future intersection operating conditions with and without the proposed development.

Table 6 – Valetta Drive Slip Lane 2036 Weekday AM / PM Intersection Operating Conditions With & Without Development

		Morning	Peak	Evening F	Peak
Intersection	Control	Av Delay	LOS	Av Delay	LOS
2036 – No Development					
Old Pitt Town Rd / Valletta Drive	Signals	54.1	D	26.7	В
2036 With Development					
Old Pitt Town Rd / Valletta Drive	Signals	67.7	E	26.8	В

Avg Delay (sec/veh) is over all movements at signals, and for worst movement at priority and roundabouts

The proposal enables the opportunity for further enhancement of the intersection with the provision of additional slip lanes and a right turn bay in Old Pitt Town Road and would result in a minor increase in average delay at the intersection following *full development* of the proposal.

On this basis, the traffic impacts of the rezoning proposal are considered acceptable.

7.5 Future Public Transport

The outcome of the GTA Transport and Access Assessment Report for The Gables resulted in the following future bus network within the precinct which ensured all dwellings would be within a 400m walking distance to existing / future bus routes as shown below.

The resulting bus network above would also allow all future residents of the proposed development to also be within 400m walking distance to existing / future bus routes without the need for any marked change to the approved network. The centroid walking distances to the above future network for each area of the subject development are shown below.

8. Conclusions

This report has reviewed the potential traffic impacts of the rezoning of lands within The Gables precinct to provide 1,175 residential housing lots. The findings of this assessment are presented below:

- 1. To date, no traffic impact assessment report has assessed the potential traffic impacts of approved development growth within the Box Hill precincts and surroundings and the associated impacts of this now approved development beyond the intersection of Old Pitt Town Road / Valetta Drive.
- 2. The intersections agreed with Hills Shire Council for the assessment of traffic impacts of this proposal currently function at a satisfactory level of service during the AM and PM weekday periods.
- 3. On the basis the traffic growth adopted in the Stanbury traffic signal warrant assessment report is realised for Old Pitt Town Road / Boundary Road, intersections along Boundary Road serving the Gables Precinct would fail as priority controlled intersection *without* the proposed development.
- 4. The approved contributions plan does not include any specific upgrade of priority controlled intersections along Boundary Road north of Old Pitt Town Road.
- 5. The proposed signalised intersection of Old Pitt Town Road / Boundary Road as currently proposed would operate at a satisfactory level of service in the future with the full traffic generation of the proposed development accounted for.
- 6. The intersection of Old Pitt Town Road / Valletta Drive would operate near capacity in the future without the proposed development.
- 7. The proposed development provides the opportunity for the creation of left turn slip lanes in Valletta Drive / Old Pitt Town Road west to further improve intersection operating conditions in the future.
- 8. The proposed development would be located within 400m walking distance to existing / future bus routes in and around The Gables precinct.

Overall the traffic impacts of the proposal are considered acceptable.

9. Appendix A – 2022 Intersection Counts

Job No.	: AUNSW3121
Client	: The Trustee for Positive Traffic Trust
Suburb	: Box Hill
Location	: 1. Boundary Rd / Cataract Rd
Day/Date	: Wed, 30th March 2022
Weather	: Fine
Description	: Classified Intersection Count
	: 15 mins Data
	Class 1 Class 2

Heavies

Classifications Lights

Approach			Bound	lary Rd									c	ataract Rd					
Direction	[Direction (Through)	2)	(Direction Right Turi	3 n)	D	irection 3 (U Turn)	BU	-	Direction (Left Turn	4 1)			Direction (Right Tur	6 n)	D	irection 6 (U Turn)	iU
Time Period	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total		Lights	Heavies	Total	Lights	Heavies	Total
7:00 to 7:15	44	6	50	12	1	13	0	0	0	6	1	7		4	2	6	0	0	0
7:15 to 7:30	29	5	34	22	3	25	0	0	0	11	3	14		3	2	5	0	0	0
7:30 to 7:45	24	8	32	46	1	47	0	0	0	26	2	28		6	1	7	0	0	0
7:45 to 8:00	30	4	34	40	2	42	0	0	0	47	1	48		15	1	16	0	0	0
8:00 to 8:15	20	4	24	15	2	17	0	0	0	58	2	60		17	0	17	0	0	0
8:15 to 8:30	38	7	45	4	0	4	0	0	0	25	1	26		11	0	11	0	0	0
8:30 to 8:45	35	4	39	5	0	5	0	0	0	15	3	18		2	0	2	0	0	0
8:45 to 9:00	25	2	27	3	1	4	0	0	0	6	1	7		5	0	5	0	0	0
AM Totals	245	40	285	147	10	157	0	0	0	194	14	208		63	6	69	0	0	0
16:00 to 16:15	47	2	49	10	0	10	0	0	0	19	1	20		7	0	7	0	0	0
16:15 to 16:30	37	4	41	10	0	10	0	0	0	9	0	9		5	1	6	0	0	0
16:30 to 16:45	49	5	54	11	0	11	1	0	1	13	0	13		6	0	6	0	0	0
16:45 to 17:00	43	4	47	6	0	6	0	0	0	8	0	8		7	0	7	0	0	0
17:00 to 17:15	47	0	47	7	0	7	0	0	0	14	0	14		4	0	4	0	0	0
17:15 to 17:30	42	4	46	10	0	10	0	0	0	10	0	10		5	0	5	0	0	0
17:30 to 17:45	51	0	51	10	0	10	0	0	0	11	1	12		3	2	5	0	0	0
17:45 to 18:00	45	1	46	5	0	5	0	0	0	6	0	6		2	1	3	0	0	0
PM Totals	361	20	381	69	0	69	1	0	1	90	2	92		39	4	43	0	0	0

Approach						Bound	ary Rd			
Direction	l	Direction (Left Turn	7	[Direction ((Through)	8		D	irection 9 (U Turn)	U
Time Period	Lights	Heavies	Total	Lights	Heavies	Total		Lights	Heavies	Total
7:00 to 7:15	2	1	3	55	0	55		0	0	0
7:15 to 7:30	11	1	12	45	3	48		0	0	0
7:30 to 7:45	13	1	14	42	7	49		0	0	0
7:45 to 8:00	21	3	24	43	6	49		0	0	0
8:00 to 8:15	14	1	15	31	5	36		0	0	0
8:15 to 8:30	5	2	7	45	9	54		0	0	0
8:30 to 8:45	2	0	2	39	2	41		0	0	0
8:45 to 9:00	4	1	5	31	8	39		0	0	0
AM Totals	72	10	82	331	40	371		0	0	0
16:00 to 16:15	4	0	4	39	5	44		0	0	0
16:15 to 16:30	3	0	3	46	2	48		0	0	0
16:30 to 16:45	7	0	7	41	2	43		0	0	0
16:45 to 17:00	1	0	1	35	1	36		0	0	0
17:00 to 17:15	3	0	3	25	2	27		0	0	0
17:15 to 17:30	5	0	5	34	2	36		0	0	0
17:30 to 17:45	0	0	0	37	4	41		0	0	0
17:45 to 18:00	0	0	0	26	2	28		0	0	0
PM Totals	23	0	23	283	20	303		0	0	0

Job No.	: AUNSW3121
Client	: The Trustee for Positive Traffic Trust
Suburb	: Box Hill
Location	: 1. Boundary Rd / Cataract Rd
Day/Date	: Wed, 30th March 2022
Weather	: Fine
Description	: Classified Intersection Count

: Hourly Summary

Approach				Bound	lary Rd									Catar	act Rd					
Direction		I	Direction (Through	2)	(Direction Right Tur	3 n)	D	irection 3 (U Turn)	BU		Direction (Left Turr	4 1)		ا (Direction Right Tur	6 n)	D	irection 6 (U Turn)	SU
Time Period		Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total		Lights	Heavies	Total	Lights	Heavies	Total
7:00 to 8:00		127	23	150	120	7	127	0	0	0	90	7	97		28	6	34	0	0	0
7:15 to 8:15		103	21	124	123	8	131	0	0	0	142	8	150		41	4	45	0	0	0
7:30 to 8:30		112	23	135	105	5	110	0	0	0	156	6	162		49	2	51	0	0	0
7:45 to 8:45		123	19	142	64	4	68	0	0	0	145	7	152		45	1	46	0	0	0
8:00 to 9:00		118	17	135	27	3	30	0	0	0	104	7	111		35	0	35	0	0	0
AM Totals		245	40	285	147	10	157	0	0	0	194	14	208		63	6	69	0	0	0
16:00 to 17:00		176	15	191	37	0	37	1	0	1	49	1	50	Ĩ	25	1	26	0	0	0
16:15 to 17:15		176	13	189	34	0	34	1	0	1	44	0	44		22	1	23	0	0	0
16:30 to 17:30		181	13	194	34	0	34	1	0	1	45	0	45		22	0	22	0	0	0
16:45 to 17:45		183	8	191	33	0	33	0	0	0	43	1	44		19	2	21	0	0	0
17:00 to 18:00		185	5	190	32	0	32	0	0	0	41	1	42		14	3	17	0	0	0
PM Totals		361	20	381	69	0	69	1	0	1	90	2	92	Ĩ	39	4	43	0	0	0

Approach						Bound	ary Rd			
Direction	l	Direction Left Turn	7)	[Direction (Through)	8		D	irection 9 (U Turn)	U
Time Period	Lights	Heavies	Total	Lights	Heavies	Total		Lights	Heavies	Total
7:00 to 8:00	47	6	53	185	16	201		0	0	0
7:15 to 8:15	59	6	65	161	21	182		0	0	0
7:30 to 8:30	53	7	60	161	27	188		0	0	0
7:45 to 8:45	42	6	48	158	22	180		0	0	0
8:00 to 9:00	25	4	29	146	24	170		0	0	0
AM Totals	72	10	82	331	40	371		0	0	0
16:00 to 17:00	15	0	15	161	10	171		0	0	0
16:15 to 17:15	14	0	14	147	7	154		0	0	0
16:30 to 17:30	16	0	16	135	7	142		0	0	0
16:45 to 17:45	9	0	9	131	9	140		0	0	0
17:00 to 18:00	8	0	8	122	10	132		0	0	0
PM Totals	23	0	23	283	20	303		0	0	0

	Ар	proa	ich	Во	oundary	Rd	C	ataract F	۲d	Вс	oundary	Rd
	Tim	e Pe	riod	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total
и	7:30	to	8:30	217	28	245	205	8	213	214	34	248
м	16:00	to	17:00	214	15	229	74	2	76	176	10	186

Ap	oproa	ch	Вс	oundary	Rd	C	ataract F	۲d	Вс	oundary	Rd
Tim	ie Pei	riod	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total
7:00	to	8:00	247	30	277	118	13	131	232	22	254
7:15	to	8:15	226	29	255	183	12	195	220	27	247
7:30	to	8:30	217	28	245	205	8	213	214	34	248
7:45	to	8:45	187	23	210	190	8	198	200	28	228
8:00	to	9:00	145	20	165	139	7	146	171	28	199
AN	/I Tot	als	392	50	442	257	20	277	403	50	453
16:00	to	17:00	214	15	229	74	2	76	176	10	186
16:15	to	17:15	211	13	224	66	1	67	161	7	168
16:30	to	17:30	216	13	229	67	0	67	151	7	158
16:45	to	17:45	216	8	224	62	3	65	140	9	149
17:00	to	18:00	217	5	222	55	4	59	130	10	140
PN	/I Tot	als	431	20	451	129	6	135	306	20	326

Job No.	: AUNSW3121
Client	: The Trustee for Positive Traffic Trust
Suburb	: Box Hill
Location	: 1. Boundary Rd / Cataract Rd
Day/Date	: Wed, 30th March 2022

Weather : Fine Description : Classified Intersection Count : Inte

e	rs	e	С	τι	0	n	L	וו	a	g	r	a	r	r	1	

Hour Starti AM Totals	ng	Vehicle Typ	e
AM Totals	-	All Vehicles	-

Approach						Bound	lary Rd										(Old Pitt	Town R	d				
Direction	с (Direction Left Turn	1	1	Direction Through	2)	(I	Direction Right Tur	3 n)	D	irection 3 (U Turn)	BU	1	Direction (Left Turr	4 1)	1	irection Through	5)	C (F	Direction Right Tur	6 n)	D	irection 6 (U Turn)	U
Time Period	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total
7:00 to 7:15	8	0	8	43	7	50	11	4	15	0	0	0	8	1	9	6	1	7	11	1	12	0	0	0
7:15 to 7:30	5	1	6	42	7	49	20	2	22	0	0	0	7	2	9	8	1	9	3	0	3	0	1	1
7:30 to 7:45	3	0	3	54	7	61	31	4	35	0	0	0	21	4	25	15	1	16	7	1	8	0	0	0
7:45 to 8:00	7	0	7	54	4	58	32	2	34	2	0	2	18	3	21	23	0	23	6	1	7	0	0	0
8:00 to 8:15	3	0	3	22	5	27	14	2	16	0	0	0	19	1	20	23	0	23	5	1	6	0	0	0
8:15 to 8:30	10	0	10	31	5	36	9	3	12	0	0	0	15	4	19	20	1	21	13	2	15	0	0	0
8:30 to 8:45	11	0	11	29	4	33	15	3	18	0	0	0	15	4	19	23	0	23	10	1	11	0	0	0
8:45 to 9:00	14	0	14	20	3	23	12	3	15	0	0	0	11	2	13	27	1	28	3	0	3	1	0	1
AM Totals	61	1	62	295	42	337	144	23	167	2	0	2	114	21	135	145	5	150	58	7	65	1	1	2
16:00 to 16:15	14	3	17	35	1	36	20	4	24	0	0	0	22	4	26	27	2	29	16	1	17	0	1	1
16:15 to 16:30	13	0	13	33	3	36	13	0	13	0	0	0	12	2	14	32	0	32	11	1	12	0	0	0
16:30 to 16:45	20	0	20	46	4	50	17	3	20	0	0	0	17	1	18	21	0	21	14	1	15	0	0	0
16:45 to 17:00	16	1	17	33	3	36	17	2	19	0	0	0	12	1	13	33	0	33	15	1	16	1	0	1
17:00 to 17:15	18	0	18	38	0	38	9	2	11	0	0	0	16	2	18	32	1	33	16	0	16	0	1	1
17:15 to 17:30	13	1	14	34	3	37	11	2	13	0	0	0	23	1	24	18	0	18	13	1	14	1	0	1
17:30 to 17:45	8	1	9	46	0	46	13	0	13	1	0	1	29	1	30	27	1	28	15	0	15	0	0	0
17:45 to 18:00	9	0	9	38	1	39	20	2	22	0	0	0	24	2	26	27	0	27	8	0	8	0	0	0
PM Totals	111	6	117	303	15	318	120	15	135	1	0	1	155	14	169	217	4	221	108	5	113	2	2	4

Approach						Bound	lary Rd										C	Old Pitt	Town R	d				
Direction	C (Direction Left Turn	7 1)	C (Direction Through	8)	(i	Direction Right Tur	9 n)	D	irection 9 (U Turn)	U	D (irection 1 Left Turn	LO 1)	D (irection 1 Through	1	D (F	irection 1 Right Turi	12 n)	Di	rection 1 (U Turn)	20
Time Period	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total
7:00 to 7:15	11	1	12	49	1	50	0	0	0	0	0	0	1	0	1	28	0	28	10	1	11	0	0	0
7:15 to 7:30	20	0	20	32	6	38	1	0	1	0	0	0	5	1	6	32	1	33	17	0	17	0	0	0
7:30 to 7:45	16	2	18	41	6	47	6	0	6	0	0	0	11	0	11	52	1	53	24	2	26	0	0	0
7:45 to 8:00	17	1	18	60	6	66	12	0	12	0	0	0	11	0	11	28	0	28	24	1	25	0	0	0
8:00 to 8:15	11	2	13	69	6	75	13	0	13	0	0	0	4	0	4	17	2	19	19	0	19	0	0	0
8:15 to 8:30	16	1	17	47	8	55	7	0	7	0	0	0	2	0	2	22	1	23	16	0	16	0	0	0
8:30 to 8:45	16	1	17	33	5	38	4	0	4	0	0	0	0	0	0	32	2	34	15	0	15	0	0	0
8:45 to 9:00	10	0	10	25	8	33	4	1	5	0	0	0	2	0	2	39	0	39	16	0	16	0	0	0
AM Totals	117	8	125	356	46	402	47	1	48	0	0	0	36	1	37	250	7	257	141	4	145	0	0	0
16:00 to 16:15	16	1	17	44	5	49	1	0	1	0	0	0	3	0	3	25	1	26	9	0	9	0	0	0
16:15 to 16:30	14	0	14	41	2	43	1	0	1	0	0	0	3	0	3	26	0	26	8	0	8	0	0	0
16:30 to 16:45	8	0	8	43	2	45	5	0	5	0	0	0	2	0	2	13	0	13	8	1	9	0	0	0
16:45 to 17:00	10	0	10	31	2	33	1	0	1	0	0	0	1	0	1	17	0	17	8	1	9	0	0	0
17:00 to 17:15	12	0	12	22	1	23	3	0	3	1	0	1	3	0	3	17	0	17	6	1	7	0	0	0
17:15 to 17:30	13	1	14	28	1	29	5	0	5	0	0	0	3	0	3	25	1	26	11	0	11	0	0	0
17:30 to 17:45	10	1	11	34	4	38	3	0	3	0	0	0	2	0	2	18	0	18	7	0	7	0	0	0
17:45 to 18:00	11	2	13	22	0	22	0	0	0	0	0	0	0	0	0	8	0	8	11	0	11	0	0	0
PM Totals	94	5	99	265	17	282	19	0	19	1	0	1	17	0	17	149	2	151	68	3	71	0	0	0

Job No. : AUNSW3121

Client : The Trustee for Positive Traffic Trust Suburb : Box Hill

Location : 2. Boundary Rd / Old Pitt Town Rd

, .

Day/Date : Wed, 30th March 2022

Weather : Fine

Description : Classified Intersection Count

: Hourly Summary

MATRI

Approach						Bound	ary Rd										(Old Pitt	Town Re	ł				
Direction	L (Direction Left Turn	7)	C (irection Through	в)	C (F	Direction Right Turi	9 n)	Di	irection 9 (U Turn)	U	D (irection 1 Left Turn	10 1)	D (irection 1 Through	1	Di (F	irection 1 light Turi	12 n)	Di	rection 1 (U Turn)	20
Time Period	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total
7:00 to 8:00	64	4	68	182	19	201	19	0	19	0	0	0	28	1	29	140	2	142	75	4	79	0	0	0
7:15 to 8:15	64	5	69	202	24	226	32	0	32	0	0	0	31	1	32	129	4	133	84	3	87	0	0	0
7:30 to 8:30	60	6	66	217	26	243	38	0	38	0	0	0	28	0	28	119	4	123	83	3	86	0	0	0
7:45 to 8:45	60	5	65	209	25	234	36	0	36	0	0	0	17	0	17	99	5	104	74	1	75	0	0	0
8:00 to 9:00	53	4	57	174	27	201	28	1	29	0	0	0	8	0	8	110	5	115	66	0	66	0	0	0
AM Totals	117	8	125	356	46	402	47	1	48	0	0	0	36	1	37	250	7	257	141	4	145	0	0	0
16:00 to 17:00	48	1	49	159	11	170	8	0	8	0	0	0	9	0	9	81	1	82	33	2	35	0	0	0
16:15 to 17:15	44	0	44	137	7	144	10	0	10	1	0	1	9	0	9	73	0	73	30	3	33	0	0	0
16:30 to 17:30	43	1	44	124	6	130	14	0	14	1	0	1	9	0	9	72	1	73	33	3	36	0	0	0
16:45 to 17:45	45	2	47	115	8	123	12	0	12	1	0	1	9	0	9	77	1	78	32	2	34	0	0	0
17:00 to 18:00	46	4	50	106	6	112	11	0	11	1	0	1	8	0	8	68	1	69	35	1	36	0	0	0
PM Totals	94	5	99	265	17	282	19	0	19	1	0	1	17	0	17	149	2	151	68	3	71	0	0	0

Job No.	: AUNSW3121
Client	: The Trustee for Positive Traffic Trust
Suburb	: Box Hill
Location	: 2. Boundary Rd / Old Pitt Town Rd
Day/Date	: Wed, 30th March 2022
Weather	: Fine
Description	: Classified Intersection Count
	: Peak Hour Summary

	Ap	oproa	ch	Вс	oundary	Rd	Old	Pitt Tow	n Rd	Вс	oundary	Rd	Old	Pitt Tow	n Rd	otal
	Tim	ie Pe	riod	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Grand 1
АМ	7:30	to	8:30	272	32	304	185	19	204	315	32	347	230	7	237	1,092
PM	16:00	to	17:00	277	24	301	233	15	248	215	12	227	123	3	126	902

Ap	proa	ich	Вс	oundary	Rd	Old	Pitt Tow	n Rd	В	oundary	Rd	Old	Pitt Tow	n Rd	otal
Tim	e Pe	riod	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Grand T
7:00	to	8:00	312	38	350	133	17	150	265	23	288	243	7	250	1,038
7:15	to	8:15	289	34	323	155	16	171	298	29	327	244	8	252	1,073
7:30	to	8:30	272	32	304	185	19	204	315	32	347	230	7	237	1,092
7:45	to	8:45	239	28	267	190	18	208	305	30	335	190	6	196	1,006
8:00	to	9:00	190	28	218	185	17	202	255	32	287	184	5	189	896
AN	/I Tot	als	502	66	568	318	34	352	520	55	575	427	12	439	1,934
16:00	to	17:00	277	24	301	233	15	248	215	12	227	123	3	126	902
16:15	to	17:15	273	18	291	232	11	243	192	7	199	112	3	115	848
16:30	to	17:30	272	21	293	232	10	242	182	7	189	114	4	118	842
16:45	to	17:45	257	15	272	251	10	261	173	10	183	118	3	121	837
17:00	to	18:00	258	12	270	249	10	259	164	10	174	111	2	113	816
PN	1 Tot	als	535	36	571	482	25	507	379	22	401	234	5	239	1,718

 Job No.
 : AUNSW3121

 Client
 : The Trustee for Positive Traffic Trust

 Suburb
 : Box Hill

 Location
 : 2. Boundary Rd / Old Pitt Town Rd

Day/Date : Wed, 30th March 2022 Weather : Fine

Description : Classified Intersection Count

: Intersection Diagram

Approach			(Old Pitt	Town R	d				
Direction		[Direction (Through)	5	[()	Direction Right Turi	6 n)	D	irection 6 (U Turn)	U
Time Period		Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total
7:00 to 7:15		21	2	23	31	1	32	0	0	0
7:15 to 7:30		18	2	20	63	0	63	0	0	0
7:30 to 7:45		34	4	38	98	2	100	0	0	0
7:45 to 8:00		31	3	34	92	1	93	0	0	0
8:00 to 8:15		31	1	32	38	1	39	0	0	0
8:15 to 8:30		36	5	41	20	2	22	0	0	0
8:30 to 8:45		37	2	39	19	1	20	1	0	1
8:45 to 9:00		30	1	31	16	0	16	0	0	0
AM Totals		238	20	258	377	8	385	1	0	1
16:00 to 16:15		56	6	62	33	1	34	0	0	0
16:15 to 16:30		46	1	47	20	0	20	0	0	0
16:30 to 16:45		47	2	49	32	0	32	0	0	0
16:45 to 17:00		58	1	59	35	1	36	0	0	0
17:00 to 17:15		62	2	64	36	0	36	0	0	0
17:15 to 17:30		48	0	48	32	1	33	0	0	0
17:30 to 17:45		68	1	69	32	0	32	0	0	0
17:45 to 18:00		57	1	58	29	0	29	0	0	0
PM Totals		442	14	456	249	3	252	0	0	0

Approach				Valle	tta Dr										(Old Pitt	Town Rd			
Direction	[Direction (Left Turr	7 1)		(Direction Right Turi	9 1)	D	irection 9 (U Turn)	U		irection 1 Left Turn	10 I)	D	irection 1 (Through)	.1		Di	rection 12 (U Turn)	2U
Time Period	Lights	Heavies	Total		Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total		Lights	Heavies	Total
7:00 to 7:15	28	0	28		4	1	5	0	0	0	1	0	1	47	3	50		0	0	0
7:15 to 7:30	41	2	43		2	2	4	0	0	0	7	5	12	70	1	71		0	0	0
7:30 to 7:45	90	3	93		9	2	11	0	0	0	22	1	23	66	2	68		0	0	0
7:45 to 8:00	111	4	115		11	1	12	0	0	0	23	2	25	60	5	65		0	0	0
8:00 to 8:15	110	1	111		19	1	20	0	0	0	7	1	8	37	4	41		0	0	0
8:15 to 8:30	48	1	49		11	2	13	0	0	0	2	4	6	44	1	45		0	0	0
8:30 to 8:45	27	0	27		11	3	14	0	0	0	7	1	8	56	5	61		0	0	0
8:45 to 9:00	24	2	26		16	2	18	0	0	0	8	1	9	60	3	63		0	0	0
AM Totals	479	13	492		83	14	97	0	0	0	77	15	92	440	24	464		0	0	0
16:00 to 16:15	50	3	53		7	2	9	0	0	0	10	2	12	48	5	53		0	0	0
16:15 to 16:30	31	1	32		4	2	6	0	0	0	2	0	2	44	0	44		0	0	0
16:30 to 16:45	21	0	21		4	0	4	0	0	0	6	2	8	34	0	34		0	0	0
16:45 to 17:00	27	1	28		4	1	5	0	0	0	6	1	7	36	0	36		0	0	0
17:00 to 17:15	32	1	33		4	2	6	0	0	0	6	1	7	33	2	35		0	0	0
17:15 to 17:30	25	0	25		4	1	5	0	0	0	6	1	7	42	3	45		0	0	0
17:30 to 17:45	36	1	37		6	1	7	0	0	0	6	2	8	37	1	38		0	0	0
17:45 to 18:00	16	0	16		2	1	3	0	0	0	6	3	9	35	0	35		0	0	0
PM Totals	238	7	245		35	10	45	0	0	0	48	12	60	309	11	320		0	0	0

Job No.	: AUNSW3121
Client	: The Trustee for Positive Traffic Trust
Suburb	: Box Hill
Location	: 3. Old Pitt Town Rd / Valletta Dr
Day/Date	: Wed, 30th March 2022
Weather	: Fine
Description	: Classified Intersection Count

: Hourly Summary

Approach			(Old Pitt	Town R	d				
Direction		C)irection (Through	5)	C (1	Direction Right Tur	6 n)	D	irection 6 (U Turn)	U
Time Period		Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total
7:00 to 8:00		104	11	115	284	4	288	0	0	0
7:15 to 8:15		114	10	124	291	4	295	0	0	0
7:30 to 8:30		132	13	145	248	6	254	0	0	0
7:45 to 8:45		135	11	146	169	5	174	1	0	1
8:00 to 9:00		134	9	143	93	4	97	1	0	1
AM Totals		238	20	258	377	8	385	1	0	1
16:00 to 17:00		207	10	217	120	2	122	0	0	0
16:15 to 17:15		213	6	219	123	1	124	0	0	0
16:30 to 17:30		215	5	220	135	2	137	0	0	0
16:45 to 17:45		236	4	240	135	2	137	0	0	0
17:00 to 18:00		235	4	239	129	1	130	0	0	0
PM Totals		442	14	456	249	3	252	0	0	0

Approach				Valle	tta Dr										(Old Pitt	Town Rd			
Direction	[(Direction (Left Turn	7 I)		[(I	Direction Right Tur	9 n)	D	irection 9 (U Turn)	U	D	irection 1 Left Turn	LO I)	D	irection 1 (Through)	.1		Di	rection 12 (U Turn)	2U
Time Period	Lights	Heavies	Total		Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total		Lights	Heavies	Total
7:00 to 8:00	270	9	279		26	6	32	0	0	0	53	8	61	243	11	254		0	0	0
7:15 to 8:15	352	10	362		41	6	47	0	0	0	59	9	68	233	12	245		0	0	0
7:30 to 8:30	359	9	368		50	6	56	0	0	0	54	8	62	207	12	219		0	0	0
7:45 to 8:45	296	6	302		52	7	59	0	0	0	39	8	47	197	15	212		0	0	0
8:00 to 9:00	209	4	213		57	8	65	0	0	0	24	7	31	197	13	210		0	0	0
AM Totals	479	13	492		83	14	97	0	0	0	77	15	92	440	24	464		0	0	0
16:00 to 17:00	129	5	134		19	5	24	0	0	0	24	5	29	162	5	167		0	0	0
16:15 to 17:15	111	3	114		16	5	21	0	0	0	20	4	24	147	2	149		0	0	0
16:30 to 17:30	105	2	107		16	4	20	0	0	0	24	5	29	145	5	150		0	0	0
16:45 to 17:45	120	3	123		18	5	23	0	0	0	24	5	29	148	6	154		0	0	0
17:00 to 18:00	109	2	111		16	5	21	0	0	0	24	7	31	147	6	153		0	0	0
PM Totals	238	7	245		35	10	45	0	0	0	48	12	60	309	11	320		0	0	0

: Peak Hour Summary

Approach Old Pitt Town Rd Valletta Dr Old Pitt Town Rd Grand Total Heavies Heavies Heavies Lights Lights Lights Total Total Total Time Period 7:15 to 8:15 16:45 to 17:49 14 6 + 419 377 393 138 ⊢ 409 146 292 172 405 16 21 313 1,141 AM РМ 371 8 11 183 706

ich	0	d Pitt Tow	n Rd	v	'alletta D	ir	Old	Pitt Tow	'	n Rd
1	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies		Total
	388	15	403	296	15	311	296	19		315
	405	14	419	393	16	409	292	21		313
	380	19	399	409	15	424	261	20		281
	305	16	321	348	13	361	236	23		259
	228	13	241	266	12	278	221	20		241
	616	28	644	562	27	589	517	39		556
	327	12	339	148	10	158	186	10		196
	336	7	343	127	8	135	167	6		173
	350	7	357	121	6	127	169	10		179
	371	6	377	138	8	146	172	11		183
	364	5	369	125	7	132	171	13		184
1	691	17	708	273	17	290	357	23		380

10. Appendix B – SIDRA Outputs
SITE LAYOUT

▽ Site: 101 [Boundary_Red Gables_AM_2036 +Dev (Site Folder: General)]

New Site Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Site: 1 [Boundary_Cataract Stage 1_AM Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average)	km/h	62.5	62.5 km/h							
Travel Distance (Total)	veh-km/h	617.0	740.4 pers-km/h							
Travel Time (Total)	veh-h/h	9.9	11.8 pers-h/h							
Desired Speed	km/h	70.4								
Speed Efficiency		0.89								
Iravel lime Index		8.74								
Congestion Coefficient		1.13								
Demand Flows (Total)	veh/h	609	731 pers/h							
Arrival Flows (Total)	veh/h	609								
Percent Heavy Vehicles (Demand)	%	1.4								
Percent Heavy Vehicles (Arrivals)	%	1.4								
Degree of Saturation		0.149								
Practical Spare Capacity	%	438.7								
Effective Intersection Capacity	veh/h	4104								
Control Delay (Total)	veh-h/h	0.71	0.86 pers-b/b							
Control Delay (Average)	Sec	4.2	4.2 sec							
Control Delay (Worst Lane by MC)	sec	6.4	4.2 300							
Control Delay (Worst Movement by MC)	sec	7.6	7.6 sec							
Geometric Delay (Average)	sec	3.8								
Stop-Line Delay (Average)	sec	0.4								
Idling Time (Average)	sec	0.0								
Intersection Level of Service (LOS)		NA								
05% Book of Queue Veh (Moret Lene)	veb	0.6								
95% Back of Queue - Dist (Worst Lane)	m	0.0								
Ave One Storage Ratio (Worst Lane)		0.00								
Effective Stops (Total)	veh/h	245	295 pers/h							
Effective Stop Rate	Volum	0.40	0.40							
Proportion Queued		0.18	0.18							
Performance Index		12.1	12.1							
	ф и ₋	404 70								
COSI (10tal)	ֆ/Π ↓/⊳	401.72	401.72 \$/n							
Carbon Diovide (Total)	L/II ka/b	⊃∠.∀ 124 7								
Hydrocarbons (Total)	kg/li	124.7 0.013								
Carbon Monoxide (Total)	kg/li	0.013								
NOx (Total)	ka/h	0.115								
		0.110								

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 17.1% 24.0% 0.0%

Intersection Performance - Annual Values						
Performance Measure	Vehicles:	All MCs	Persons			

Demand Flows (Total)	veh/y	292,547	351,057 pers/y
Delay (Total)	veh-h/y	343	411 pers-h/y
Effective Stops (Total)	veh/y	117,834	141,401 pers/y
Travel Distance (Total)	veh-km/y	296,144	355,373 pers-km/y
Travel Time (Total)	veh-h/y	4,740	5,688 pers-h/y
Cost (Total)	\$/y	192,825	192,825 \$/y
Fuel Consumption (Total)	L/y	25,379	
Carbon Dioxide (Total)	kg/y	59,872	
Hydrocarbons (Total)	kg/y	6	
Carbon Monoxide (Total)	kg/y	109	
NOx (Total)	kg/y	55	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:49 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 1 [Boundary_Cataract Stage 1_AM Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Stop (Two-Way)

Vehic	Vehicle Movement Performance														
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
טו		Class	FI [Total	IOWS	FI Total	OWS 山\/1	Sath	Delay	Service	Qu I Vah		Que	Stop	NO. OT	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		TALE	Cycles	km/h
South	: Cata	ract Rd													
1	L2	All MCs	173	1.2	173	1.2	0.149	6.3	LOS A	0.6	4.4	0.30	0.57	0.30	52.2
		LV	171		171		0.149	6.3	LOS A	0.6	4.4	NA	NA	NA	52.2
		ΗV	2		2		0.149	7.2	LOS A	0.6	4.4	NA	NA	NA	51.5
2	T1	All MCs	56	3.8	56	3.8	0.149	4.5	LOS A	0.6	4.4	0.30	0.57	0.30	52.5
		LV	54		54		0.149	4.5	LOS A	0.6	4.4	NA	NA	NA	52.5
		HV	2		2		0.149	4.9	LOS A	0.6	4.4	NA	NA	NA	52.2
Appro	ach		228	1.8	228	1.8	0.149	5.8	LOS A	0.6	4.4	0.30	0.57	0.30	52.3
East:	Bound	dary Rd													
4	L2	All MCs	64	1.6	64	1.6	0.137	7.5	LOS A	0.0	0.0	0.00	0.16	0.00	78.2
		LV	63		63		0.137	7.5	LOS A	0.0	0.0	NA	NA	NA	78.2
		ΗV	1		1		0.137	7.5	LOS A	0.0	0.0	NA	NA	NA	78.2
5	T1	All MCs	199	0.5	199	0.5	0.137	0.0	LOS A	0.0	0.0	0.00	0.16	0.00	87.4
		LV	198		198		0.137	0.0	LOS A	0.0	0.0	NA	NA	NA	87.4
		ΗV	1		1		0.137	0.0	LOS A	0.0	0.0	NA	NA	NA	87.4
Appro	ach		263	0.8	263	0.8	0.137	1.9	NA	0.0	0.0	0.00	0.16	0.00	84.9
West:	Boun	dary Rd													
12	R2	All MCs	118	1.8	118	1.8	0.085	6.4	LOS A	0.4	2.7	0.37	0.60	0.37	51.6
		LV	116		116		0.085	6.4	LOS A	0.4	2.7	NA	NA	NA	51.6
		HV	2		2		0.085	7.6	LOS A	0.4	2.7	NA	NA	NA	50.7
Appro	ach		118	1.8	118	1.8	0.085	6.4	NA	0.4	2.7	0.37	0.60	0.37	51.6
All Ve	hicles		609	1.4	609	1.4	0.149	4.2	NA	0.6	4.4	0.18	0.40	0.18	62.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:49 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014 V2.sip9

V Site: 2 [Boundary_Cataract Stage 2_AM Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 2 (Median) at three-way intersection with 5-lane major road. Give-way behaviour assumed at Stage 2. Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	92.6 174.0 1.9 95.2 0.97 9.70 1.03	92.6 km/h 208.7 pers-km/h 2.3 pers-h/h							
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % % veh/h	199 199 1.6 1.6 0.075 1212.7 2665	239 pers/h							
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	0.01 0.2 0.6 1.1 0.0 0.2 0.0 NA	0.01 pers-h/h 0.2 sec 1.1 sec							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	0.1 0.8 0.04 5 0.03 0.06 2.9	6 pers/h 0.03 0.06 2.9							
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	87.04 15.5 36.6 0.005 0.12 0.034	87.04 \$/h							

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 30.3% 0.0% 0.0%

Intersection Performance - Annual Val	ues		
Performance Measure	Vehicles:	All MCs	Persons

Demand Flows (Total)	veh/y	95,495 1	14,594 pers/y
Delay (Total)	veh-h/y	5	6 pers-h/y
Effective Stops (Total)	veh/y	2,556	3,067 pers/y
Travel Distance (Total)	veh-km/y	83,497 1	00,196 pers-km/y
Travel Time (Total)	veh-h/y	902	1,082 pers-h/y
Cost (Total)	\$/y	41,778	41,778 \$/y
Fuel Consumption (Total)	L/y	7,444	
Carbon Dioxide (Total)	kg/y	17,577	
Hydrocarbons (Total)	kg/y	3	
Carbon Monoxide (Total)	kg/y	59	
NOx (Total)	kg/y	16	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:50 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 2 [Boundary_Cataract Stage 2_AM Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 2 (Median) at three-way intersection with 5-lane major road. Give-way behaviour assumed at Stage 2. Site Category: (None) Give-Way (Two-Way)

Vehic	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	iand ows HV] %	Ar Fl [Total veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% E Qu [Veh. veh	Back Of ieue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Med	ian Stora	ge Area												
3	R2	All MCs	55	1.9	55	1.9	0.043	0.6	LOS A	0.1	0.8	0.20	0.10	0.20	51.1
		LV	54		54		0.043	0.6	LOS A	0.1	0.8	NA	NA	NA	51.1
		HV	1		1		0.043	1.1	LOS A	0.1	0.8	NA	NA	NA	50.4
Appro	ach		55	1.9	55	1.9	0.043	0.6	LOS A	0.1	0.8	0.20	0.10	0.20	51.1
West:	Boun	dary Rd													
11	T1	All MCs	144	1.5	144	1.5	0.075	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	110.0
		LV	142		142		0.075	0.0	LOS A	0.0	0.0	NA	NA	NA	110.0
		ΗV	2		2		0.075	0.0	LOS A	0.0	0.0	NA	NA	NA	110.0
Appro	ach		144	1.5	144	1.5	0.075	0.0	NA	0.0	0.0	0.00	0.00	0.00	110.0
All Ve	hicles		199	1.6	199	1.6	0.075	0.2	NA	0.1	0.8	0.06	0.03	0.06	92.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:50 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 1 [Boundary_Cataract Stage 1_AM 2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	71.8 1013.0 14.1 79.8 0.90 8.88 1.11	71.8 km/h 1215.6 pers-km/h 16.9 pers-h/h							
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1001 1001 1.6 1.6 0.374 114.0 2677	1201 pers/h							
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	1.07 3.8 8.6 14.0 2.5 1.4 0.0 NA	1.28 pers-h/h 3.8 sec 14.0 sec							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	2.0 14.0 0.01 363 0.36 0.26 19.2	436 pers/h 0.36 0.26 19.2							
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	596.24 87.0 205.4 0.026 0.53 0.184	596.24 \$/h							

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 46.4% 46.7% 0.0%

Intersection Performance - Annual Val	ues		
Performance Measure	Vehicles:	All MCs	Persons

Demand Flows (Total)	veh/y	480,505	576,606 pers/y
Delay (Total)	veh-h/y	511	614 pers-h/y
Effective Stops (Total)	veh/y	174,347	209,217 pers/y
Travel Distance (Total)	veh-km/y	486,243	583,492 pers-km/y
Travel Time (Total)	veh-h/y	6,771	8,125 pers-h/y
Cost (Total)	\$/y	286,194	286,194 \$/y
Fuel Consumption (Total)	L/y	41,761	
Carbon Dioxide (Total)	kg/y	98,595	
Hydrocarbons (Total)	kg/y	12	
Carbon Monoxide (Total)	kg/y	256	
NOx (Total)	kg/y	88	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:51 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 1 [Boundary_Cataract Stage 1_AM 2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Stop (Two-Way)

Vehic	Vehicle Movement Performance														
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
טו		Class	H Intal	IOWS H\/1	FI Latal	OWS	Sath	Delay	Service	Ql [\/eh	Jeue Diet 1	Que	Stop Rate	NO. OT	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	: Cata	ract Rd													
1	L2	All MCs	326	1.0	326	1.0	0.374	9.0	LOS A	2.0	14.0	0.59	0.82	0.72	50.6
		LV	323		323		0.374	9.0	LOS A	2.0	14.0	NA	NA	NA	50.7
		HV	3		3		0.374	14.0	LOS A	2.0	14.0	NA	NA	NA	47.4
2	T1	All MCs	45	1.0	45	1.0	0.374	5.3	LOS A	2.0	14.0	0.59	0.82	0.72	51.0
		LV	45		45		0.374	5.3	LOS A	2.0	14.0	NA	NA	NA	51.0
		HV	0		0		0.374	6.4	LOS A	2.0	14.0	NA	NA	NA	50.3
Appro	ach		372	1.0	372	1.0	0.374	8.6	LOS A	2.0	14.0	0.59	0.82	0.72	50.7
East:	Bound	dary Rd													
4	L2	All MCs	9	2.0	9	2.0	0.290	8.2	LOS A	0.0	0.0	0.00	0.01	0.00	88.0
		LV	9		9		0.290	8.2	LOS A	0.0	0.0	NA	NA	NA	88.0
		ΗV	0		0		0.290	8.2	LOS A	0.0	0.0	NA	NA	NA	88.0
5	T1	All MCs	548	2.0	548	2.0	0.290	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	107.9
		LV	537		537		0.290	0.0	LOS A	0.0	0.0	NA	NA	NA	107.9
		HV	11		11		0.290	0.0	LOS A	0.0	0.0	NA	NA	NA	107.9
Appro	ach		558	2.0	558	2.0	0.290	0.2	NA	0.0	0.0	0.00	0.01	0.00	107.5
West:	Boun	dary Rd													
12	R2	All MCs	72	2.0	72	2.0	0.073	7.9	LOS A	0.3	2.1	0.54	0.72	0.54	50.8
		LV	70		70		0.073	7.8	LOS A	0.3	2.1	NA	NA	NA	50.8
		ΗV	1		1		0.073	11.9	LOS A	0.3	2.1	NA	NA	NA	48.1
Appro	ach		72	2.0	72	2.0	0.073	7.9	NA	0.3	2.1	0.54	0.72	0.54	50.8
All Ve	hicles		1001	1.6	1001	1.6	0.374	3.8	NA	2.0	14.0	0.26	0.36	0.31	71.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:51 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014 V2.sip9

V Site: 2 [Boundary_Cataract Stage 2_AM 2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 2 (Median) at three-way intersection with 5-lane major road. Give-way behaviour assumed at Stage 2. Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	97.6 219.6 2.2 99.6 0.98 9.78 1.02	97.6 km/h 263.5 pers-km/h 2.7 pers-h/h							
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	240 240 2.0 2.0 0.101 874.0 2385	288 pers/h							
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	0.01 0.2 0.9 1.6 0.0 0.2 0.0 NA	0.01 pers-h/h 0.2 sec 1.6 sec							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	0.1 0.7 0.04 6 0.02 0.05 3.1	7 pers/h 0.02 0.05 3.1							
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	105.90 19.4 45.9 0.007 0.16 0.047	105.90 \$/h							

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 33.1% 0.0% 0.0%

Intersection Performance - Annual Val	ues		
Performance Measure	Vehicles:	All MCs	Persons

Demand Flows (Total)	veh/y	115,200 1	38,240 pers/y
Delay (Total)	veh-h/y	5	7 pers-h/y
Effective Stops (Total)	veh/y	2,864	3,437 pers/y
Travel Distance (Total)	veh-km/y	105,392 1	26,470 pers-km/y
Travel Time (Total)	veh-h/y	1,080	1,295 pers-h/y
Cost (Total)	\$/y	50,831	50,831 \$/y
Fuel Consumption (Total)	L/y	9,326	
Carbon Dioxide (Total)	kg/y	22,048	
Hydrocarbons (Total)	kg/y	3	
Carbon Monoxide (Total)	kg/y	77	
NOx (Total)	kg/y	22	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:51 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 2 [Boundary_Cataract Stage 2_AM 2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 2 (Median) at three-way intersection with 5-lane major road. Give-way behaviour assumed at Stage 2. Site Category: (None) Give-Way (Two-Way)

Vehic	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	and lows HV] %	Ar Fl [Total] veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Qı [Veh. veh	Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	Med	ian Stora	ge Area												
3	R2	All MCs	46	2.0	46	2.0	0.038	0.9	LOS A	0.1	0.7	0.24	0.13	0.24	50.9
		LV	45		45		0.038	0.9	LOS A	0.1	0.7	NA	NA	NA	50.9
		HV	1		1		0.038	1.6	LOS A	0.1	0.7	NA	NA	NA	50.0
Appro	ach		46	2.0	46	2.0	0.038	0.9	LOS A	0.1	0.7	0.24	0.13	0.24	50.9
West:	Boun	dary Rd													
11	T1	All MCs	194	2.0	194	2.0	0.101	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	110.0
		LV	190		190		0.101	0.0	LOS A	0.0	0.0	NA	NA	NA	110.0
		ΗV	4		4		0.101	0.0	LOS A	0.0	0.0	NA	NA	NA	110.0
Appro	ach		194	2.0	194	2.0	0.101	0.0	NA	0.0	0.0	0.00	0.00	0.00	110.0
All Vel	nicles		240	2.0	240	2.0	0.101	0.2	NA	0.1	0.7	0.05	0.02	0.05	97.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:51 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 1 [Boundary_Cataract Stage 1_AM 2036 + Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average)	km/h	68.4	68.4 km/h							
Travel Distance (Total)	veh-km/h	1257.3	1508.7 pers-km/h							
Travel Time (Total)	veh-h/h	18.4	22.0 pers-h/h							
Desired Speed	km/h	78.3								
Speed Efficiency		0.87								
Iravel lime Index		8.60								
Congestion Coefficient		1.14								
Demand Flows (Total)	veh/h	1242	1491 pers/h							
Arrival Flows (Total)	veh/h	1242								
Percent Heavy Vehicles (Demand)	%	1.6								
Percent Heavy Vehicles (Arrivals)	%	1.6								
Degree of Saturation		0.596								
Practical Spare Capacity	%	34.1								
Effective Intersection Capacity	veh/h	2082								
Control Delay (Total)	veh_h/h	1 84	2.21 pers-h/h							
Control Delay (Average)	Sec	5 3	5.3 sec							
Control Delay (Worst Lane by MC)	sec	11 4	0.0 300							
Control Delay (Worst Movement by MC)	sec	19.7	19.7 sec							
Geometric Delay (Average)	sec	2.7								
Stop-Line Delay (Average)	sec	2.7								
Idling Time (Average)	sec	0.1								
Intersection Level of Service (LOS)		NA								
05% Book of Queue Veh (Meret Lane)	Veb	4.2								
95% Back of Queue - Veri (Worst Lane)	m	4.3								
Ave. One Storage Ratio (Worst Lane)	111	0.02								
Effective Stops (Total)	veh/h	606	728 pers/h							
Effective Stop Rate	VCII/II	0 49	0.49							
Proportion Queued		0.33	0.33							
Performance Index		28.5	28.5							
	A "	700.45								
Cost (lotal)	\$%/h	768.15	/68.15 \$/h							
Fuel Consumption (Total)	L/f) kg/b	109.0								
Hydrocarbons (Total)	kg/li	207.0 0.032								
Carbon Monovide (Total)	kg/h	0.052								
NOx (Total)	kg/h	0.228								
		0.220								

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 53.5% 53.2% 0.0%

Intersection Performance - Annual Val	ues		
Performance Measure	Vehicles:	All MCs	Persons

Demand Flows (Total)	veh/y	596,211	715,453 pers/y
Delay (Total)	veh-h/y	883	1,059 pers-h/y
Effective Stops (Total)	veh/y	291,001	349,201 pers/y
Travel Distance (Total)	veh-km/y	603,496	724,195 pers-km/y
Travel Time (Total)	veh-h/y	8,819	10,583 pers-h/y
Cost (Total)	\$/y	368,711	368,711 \$/y
Fuel Consumption (Total)	L/y	52,318	
Carbon Dioxide (Total)	kg/y	123,501	
Hydrocarbons (Total)	kg/y	15	
Carbon Monoxide (Total)	kg/y	308	
NOx (Total)	kg/y	109	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:52 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 1 [Boundary_Cataract Stage 1_AM 2036 + Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Stop (Two-Way)

Vehic	Vehicle Movement Performance														
Mov	Turn	Mov	Den	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	- Total		l-I Latal		Satn	Delay	Service	QU		Que	Stop	No. of	Speed
			veh/h	нvј %	veh/h	HV] %	v/c	sec		ven. veh	Dist j m		Rale	Cycles	km/h
South	: Cata	ract Rd													
1	L2	All MCs	468	1.0	468	1.0	0.596	11.8	LOS A	4.3	30.4	0.70	1.05	1.22	48.8
		LV	464		464		0.596	11.7	LOS A	4.3	30.4	NA	NA	NA	48.8
		ΗV	5		5		0.596	19.7	LOS B	4.3	30.4	NA	NA	NA	44.1
2	T1	All MCs	45	1.0	45	1.0	0.596	6.9	LOS A	4.3	30.4	0.70	1.05	1.22	49.1
		LV	45		45		0.596	6.9	LOS A	4.3	30.4	NA	NA	NA	49.1
		HV	0		0		0.596	8.5	LOS A	4.3	30.4	NA	NA	NA	48.1
Appro	ach		514	1.0	514	1.0	0.596	11.4	LOS A	4.3	30.4	0.70	1.05	1.22	48.8
East:	Bound	dary Rd													
4	L2	All MCs	9	2.0	9	2.0	0.337	8.2	LOS A	0.0	0.0	0.00	0.01	0.00	88.0
		LV	9		9		0.337	8.2	LOS A	0.0	0.0	NA	NA	NA	88.0
		ΗV	0		0		0.337	8.2	LOS A	0.0	0.0	NA	NA	NA	88.0
5	T1	All MCs	639	2.0	639	2.0	0.337	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	108.2
		LV	626		626		0.337	0.0	LOS A	0.0	0.0	NA	NA	NA	108.2
		HV	13		13		0.337	0.0	LOS A	0.0	0.0	NA	NA	NA	108.2
Appro	ach		648	2.0	648	2.0	0.337	0.1	NA	0.0	0.0	0.00	0.01	0.00	107.8
West:	Boun	dary Rd													
12	R2	All MCs	80	2.0	80	2.0	0.093	8.6	LOS A	0.4	2.7	0.58	0.78	0.58	50.3
		LV	78		78		0.093	8.5	LOS A	0.4	2.7	NA	NA	NA	50.4
		ΗV	2		2		0.093	14.1	LOS A	0.4	2.7	NA	NA	NA	46.7
Appro	ach		80	2.0	80	2.0	0.093	8.6	NA	0.4	2.7	0.58	0.78	0.58	50.3
All Ve	hicles		1242	1.6	1242	1.6	0.596	5.3	NA	4.3	30.4	0.33	0.49	0.54	68.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:52 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 2 [Boundary_Cataract Stage 2_AM 2036 + Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 2 (Median) at three-way intersection with 5-lane major road. Give-way behaviour assumed at Stage 2. Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average)	km/h	98.6	98.6 km/h							
Travel Distance (Total)	veh-km/h	241.9	290.3 pers-km/h							
Iravel lime (lotal)	veh-h/h	2.5	2.9 pers-h/h							
Desired Speed	Km/n	100.5								
Travel Time Index		9.90								
Congestion Coefficient		1.02								
3										
Demand Flows (Total)	veh/h	262	315 pers/h							
Arrival Flows (Total)	veh/h	262								
Percent Heavy Vehicles (Demand)	%	2.0								
Degree of Saturation	70	2.0 0.112								
Practical Spare Capacity	%	774.2								
Effective Intersection Capacity	veh/h	2338								
· · ·										
Control Delay (Total)	veh-h/h	0.01	0.02 pers-h/h							
Control Delay (Average)	sec	0.2	0.2 sec							
Control Delay (Worst Lane by MC)	sec	1.0	1.8 500							
Geometric Delay (Average)	Sec	0.0	1.0 Sec							
Stop-Line Delay (Average)	sec	0.2								
Idling Time (Average)	sec	0.0								
Intersection Level of Service (LOS)		NA								
		0.4								
95% Back of Queue - Ven (Worst Lane)	ven	0.1								
Ave Que Storage Ratio (Worst Lane)		0.04								
Effective Stops (Total)	veh/h	7	8 pers/h							
Effective Stop Rate		0.03	0.03							
Proportion Queued		0.05	0.05							
Performance Index		3.3	3.3							
Cost (Total)	¢/b	115 74	115 74 ¢/b							
Fuel Consumption (Total)	۶/n L/h	21.3	115.74 \$/11							
Carbon Dioxide (Total)	kg/h	50.4								
Hydrocarbons (Total)	kg/h	0.008								
Carbon Monoxide (Total)	kg/h	0.18								
NOx (Total)	kg/h	0.051								

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 34.4% 0.0% 0.0%

Intersection Performance - Annual Val	ues		
Performance Measure	Vehicles:	All MCs	Persons

Demand Flows (Total)	veh/y	125,811 1	50,973 pers/y
Delay (Total)	veh-h/y	6	7 pers-h/y
Effective Stops (Total)	veh/y	3,197	3,837 pers/y
Travel Distance (Total)	veh-km/y	116,109 1	39,330 pers-km/y
Travel Time (Total)	veh-h/y	1,177	1,413 pers-h/y
Cost (Total)	\$/y	55,557	55,557 \$/y
Fuel Consumption (Total)	L/y	10,234	
Carbon Dioxide (Total)	kg/y	24,194	
Hydrocarbons (Total)	kg/y	4	
Carbon Monoxide (Total)	kg/y	85	
NOx (Total)	kg/y	24	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:52 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 2 [Boundary_Cataract Stage 2_AM 2036 + Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 2 (Median) at three-way intersection with 5-lane major road. Give-way behaviour assumed at Stage 2. Site Category: (None) Give-Way (Two-Way)

Vehic	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	nand lows HV] %	Ar Fl [Total veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% [Qu [Veh. veh	Back Of ieue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Med	ian Stora	ge Area												
3	R2	All MCs	46	2.0	46	2.0	0.039	1.0	LOS A	0.1	0.7	0.25	0.14	0.25	50.9
		LV	45		45		0.039	1.0	LOS A	0.1	0.7	NA	NA	NA	50.9
		HV	1		1		0.039	1.8	LOS A	0.1	0.7	NA	NA	NA	49.8
Appro	ach		46	2.0	46	2.0	0.039	1.0	LOS A	0.1	0.7	0.25	0.14	0.25	50.9
West:	Boun	dary Rd													
11	T1	All MCs	216	2.0	216	2.0	0.112	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	110.0
		LV	211		211		0.112	0.0	LOS A	0.0	0.0	NA	NA	NA	110.0
		HV	4		4		0.112	0.0	LOS A	0.0	0.0	NA	NA	NA	110.0
Appro	ach		216	2.0	216	2.0	0.112	0.0	NA	0.0	0.0	0.00	0.00	0.00	110.0
All Vel	hicles		262	2.0	262	2.0	0.112	0.2	NA	0.1	0.7	0.05	0.03	0.05	98.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:52 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 1 [Boundary_Cataract Stage 1_PM Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Performance Measure Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity	Vehicles: km/h veh-km/h veh-h/h km/h veh/h % %	All MCs 62.4 577.7 9.3 70.1 0.89 8.77 1.12 571 571 1.5 1.5 1.5 0.187 326.8	Persons 62.4 km/h 693.2 pers-km/h 11.1 pers-h/h 685 pers/h							
Effective Intersection Capacity	veh/h	3044								
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	0.65 4.1 6.1 8.1 3.7 0.4 0.0 NA	0.78 pers-h/h 4.1 sec 8.1 sec							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	0.8 5.8 0.00 224 0.39 0.19 11.7	269 pers/h 0.39 0.19 11.7							
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	377.30 49.8 117.6 0.013 0.23 0.113	377.30 \$/h							

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 17.4% 18.8% 0.0%

Intersection Performance - Annual Val	ues		
Performance Measure	Vehicles:	All MCs	Persons

Demand Flows (Total)	veh/y	273,853	328,623 pers/y
Delay (Total)	veh-h/y	313	375 pers-h/y
Effective Stops (Total)	veh/y	107,681	129,218 pers/y
Travel Distance (Total)	veh-km/y	277,285	332,742 pers-km/y
Travel Time (Total)	veh-h/y	4,447	5,336 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y	181,106 23,919 56,442 6 109 54	181,106 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:53 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 1 [Boundary_Cataract Stage 1_PM Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Stop (Two-Way)

Vehic	Vehicle Movement Performance														
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
שו		Class	Total	HV 1	۲۱ Total	HV 1	Salli	Delay	Service	[Veh.	Dist 1	Que	Rate	Cvcles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Cata	ract Rd													
1	L2	All MCs	231	0.9	231	0.9	0.187	6.2	LOS A	0.8	5.8	0.29	0.57	0.29	52.2
		LV	228		228		0.187	6.2	LOS A	0.8	5.8	NA	NA	NA	52.2
		HV	2		2		0.187	7.1	LOS A	0.8	5.8	NA	NA	NA	51.5
2	T1	All MCs	57	3.7	57	3.7	0.187	4.4	LOS A	0.8	5.8	0.29	0.57	0.29	52.5
		LV	55		55		0.187	4.4	LOS A	0.8	5.8	NA	NA	NA	52.5
		HV	2		2		0.187	4.7	LOS A	0.8	5.8	NA	NA	NA	52.3
Appro	ach		287	1.5	287	1.5	0.187	5.9	LOS A	0.8	5.8	0.29	0.57	0.29	52.2
East:	Bound	lary Rd													
4	L2	All MCs	17	6.3	17	6.3	0.103	8.1	LOS A	0.0	0.0	0.00	0.06	0.00	84.0
		LV	16		16		0.103	8.1	LOS A	0.0	0.0	NA	NA	NA	84.0
		HV	1		1		0.103	8.1	LOS A	0.0	0.0	NA	NA	NA	84.0
5	T1	All MCs	181	0.6	181	0.6	0.103	0.0	LOS A	0.0	0.0	0.00	0.06	0.00	100.9
		LV	180		180		0.103	0.0	LOS A	0.0	0.0	NA	NA	NA	100.9
		HV	1		1		0.103	0.0	LOS A	0.0	0.0	NA	NA	NA	100.9
Appro	ach		198	1.1	198	1.1	0.103	0.7	NA	0.0	0.0	0.00	0.06	0.00	99.2
West:	Boun	dary Rd													
12	R2	All MCs	85	2.5	85	2.5	0.058	6.1	LOS A	0.3	1.8	0.31	0.58	0.31	51.7
		LV	83		83		0.058	6.1	LOS A	0.3	1.8	NA	NA	NA	51.7
		HV	2		2		0.058	6.9	LOS A	0.3	1.8	NA	NA	NA	51.1
Appro	ach		85	2.5	85	2.5	0.058	6.1	NA	0.3	1.8	0.31	0.58	0.31	51.7
All Ve	hicles		571	1.5	571	1.5	0.187	4.1	NA	0.8	5.8	0.19	0.39	0.19	62.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:53 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 2 [Boundary_Cataract Stage 2_PM Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 2 (Median) at three-way intersection with 5-lane major road. Give-way behaviour assumed at Stage 2. Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average)	km/h	102.0	102.0 km/h							
Travel Distance (Total)	veh-km/h	219.9	263.9 pers-km/h							
Travel Time (Total)	veh-h/h	2.2	2.6 pers-h/h							
Desired Speed	km/n	103.4								
		0.99								
Congestion Coefficient		9.85								
Congestion Coemoint		1.01								
Demand Flows (Total)	veh/h	232	278 pers/h							
Arrival Flows (Total)	veh/h	232								
Percent Heavy Vehicles (Demand)	%	1.4								
Percent Heavy Vehicles (Arrivals)	%	1.4								
Degree of Saturation	0/_	0.105								
Effective Intersection Capacity	/0 veh/h	2208								
Encouve mersection depacity	VCII/II	2200								
Control Delay (Total)	veh-h/h	0.01	0.01 pers-h/h							
Control Delay (Average)	sec	0.1	0.1 sec							
Control Delay (Worst Lane by MC)	sec	0.9								
Control Delay (Worst Movement by MC)	sec	1.6	1.6 sec							
Geometric Delay (Average)	sec	0.0								
Idling Time (Average)	Sec	0.1								
Intersection Level of Service (LOS)	360	NA								
95% Back of Queue - Veh (Worst Lane)	veh	0.1								
95% Back of Queue - Dist (Worst Lane)	m	0.4								
Ave. Que Storage Ratio (Worst Lane)		0.02								
Effective Stops (Iotal)	veh/h	4	4 pers/h							
Proportion Quoued		0.02	0.02							
Performance Index		2.7	2.7							
		_								
Cost (Total)	\$/h	101.81	101.81 \$/h							
Fuel Consumption (Total)	L/h	18.8								
Carbon Dioxide (Iotal)	kg/h	44.3								
Hydrocardons (10tal) Carbon Monovido (Total)	kg/n	0.007								
NOx (Total)	kg/ll	0.17								
	Ng/11	0.007								

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 33.5% 0.0% 0.0%

Intersection Performance - Annual Val			
Intersection renormance - Annual val	ues		
Performance Measure	Vehicles:	All MCs	Persons

Demand Flows (Total)	veh/y	111,158	133,390 pers/y
Delay (Total)	veh-h/y	4	4 pers-h/y
Effective Stops (Total)	veh/y	1,745	2,095 pers/y
Travel Distance (Total)	veh-km/y	105,544	126,653 pers-km/y
Travel Time (Total)	veh-h/y	1,035	1,241 pers-h/y
Cost (Total)	\$/y	48,870	48,870 \$/y
Fuel Consumption (Total)	L/y	9,019	
Carbon Dioxide (Total)	kg/y	21,278	
Hydrocarbons (Total)	kg/y	3	
Carbon Monoxide (Total)	kg/y	79	
NOx (Total)	kg/y	18	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:53 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 2 [Boundary_Cataract Stage 2_PM Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 2 (Median) at three-way intersection with 5-lane major road. Give-way behaviour assumed at Stage 2. Site Category: (None) Give-Way (Two-Way)

Vehic	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	nand lows HV] %	Ar Fl [Total] veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Qu [Veh. veh	Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	Med	an Stora	ge Area												
3	R2	All MCs	28	3.7	28	3.7	0.024	0.9	LOS A	0.1	0.4	0.24	0.13	0.24	50.8
		LV	27		27		0.024	0.9	LOS A	0.1	0.4	NA	NA	NA	50.8
		HV	1		1		0.024	1.6	LOS A	0.1	0.4	NA	NA	NA	49.8
Appro	ach		28	3.7	28	3.7	0.024	0.9	LOS A	0.1	0.4	0.24	0.13	0.24	50.8
West:	Boun	dary Rd													
11	T1	All MCs	203	1.0	203	1.0	0.105	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	110.0
		LV	201		201		0.105	0.0	LOS A	0.0	0.0	NA	NA	NA	110.0
		ΗV	2		2		0.105	0.0	LOS A	0.0	0.0	NA	NA	NA	110.0
Appro	ach		203	1.0	203	1.0	0.105	0.0	NA	0.0	0.0	0.00	0.00	0.00	110.0
All Vel	nicles		232	1.4	232	1.4	0.105	0.1	NA	0.1	0.4	0.03	0.02	0.03	102.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:53 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 1 [Boundary_Cataract Stage 1_PM 2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average)	km/h	62.3	62.3 km/h							
Travel Distance (Total)	veh-km/h	731.2	877.4 pers-km/h							
Travel Time (Total)	veh-h/h	11.7	14.1 pers-h/h							
Desired Speed	km/h	70.5								
Speed Efficiency		0.88								
Congestion Coefficient		8.7U 1.13								
Congestion Coefficient		1.15								
Demand Flows (Total)	veh/h	723	868 pers/h							
Arrival Flows (Total)	veh/h	723								
Percent Heavy Vehicles (Demand)	%	2.2								
Percent Heavy Vehicles (Arrivals)	%	2.2								
Degree of Saturation	0/	0.253								
Practical Spare Capacity	%	287.5								
Enective intersection Capacity	ven/n	2800								
Control Delay (Total)	veh-h/h	0.89	1.07 pers-h/h							
Control Delay (Average)	sec	4.4	4.4 sec							
Control Delay (Worst Lane by MC)	sec	6.6								
Control Delay (Worst Movement by MC)	sec	8.2	8.2 sec							
Geometric Delay (Average)	sec	3.8								
Stop-Line Delay (Average)	sec	0.7								
Intersection Level of Service (LOS)	360	0.0 NA								
95% Back of Queue - Veh (Worst Lane)	veh	1.3								
95% Back of Queue - Dist (Worst Lane)	m	9.2								
Ave. Que Storage Ratio (Worst Lane)		0.01								
Effective Stops (Iotal)	veh/h	303	363 pers/h							
Effective Stop Rate		0.42	0.42							
Proportion Queueu Performance Index		0.25	0.25							
		17.7	17.7							
Cost (Total)	\$/h	481.78	481.78 \$/h							
Fuel Consumption (Total)	L/h	65.1								
Carbon Dioxide (Iotal)	kg/h	153.8								
Hydrocarbons (10tal) Carbon Monovido (Total)	кg/h kg/b	0.016								
	kg/fi kg/b	0.29								
	Ng/11	0.101								

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 22.4% 25.0% 0.0%

Intersection Performance - Annual Val	ues		
Performance Measure	Vehicles:	All MCs	Persons

Demand Flows (Total)	veh/y	347,116	416,539 pers/y
Delay (Total)	veh-h/y	427	513 pers-h/y
Effective Stops (Total)	veh/y	145,210	174,252 pers/y
Travel Distance (Total)	veh-km/y	350,968	421,162 pers-km/y
Travel Time (Total)	veh-h/y	5,633	6,760 pers-h/y
Cost (Total)	\$/y	231,256	231,256 \$/y
Fuel Consumption (Total)	L/y	31,233	
Carbon Dioxide (Total)	kg/y	73,847	
Hydrocarbons (Total)	kg/y	8	
Carbon Monoxide (Total)	kg/y	137	
NOx (Total)	kg/y	87	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:54 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 1 [Boundary_Cataract Stage 1_PM 2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Stop (Two-Way)

Vehic	Vehicle Movement Performance														
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI [Total	IOWS H\/1	T [Total	OWS H\/1	Sath	Delay	Service	Qu [\/eh	eue Diet 1	Que	Stop	NO. OT	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	: Cata	ract Rd													
1	L2	All MCs	81	2.0	81	2.0	0.072	6.4	LOS A	0.3	2.0	0.33	0.58	0.33	52.1
		LV	79		79		0.072	6.3	LOS A	0.3	2.0	NA	NA	NA	52.1
		HV	2		2		0.072	7.4	LOS A	0.3	2.0	NA	NA	NA	51.3
2	T1	All MCs	22	2.0	22	2.0	0.072	4.7	LOS A	0.3	2.0	0.33	0.58	0.33	52.5
		LV	22		22		0.072	4.7	LOS A	0.3	2.0	NA	NA	NA	52.5
		HV	0		0		0.072	5.4	LOS A	0.3	2.0	NA	NA	NA	51.9
Appro	ach		103	2.0	103	2.0	0.072	6.0	LOS A	0.3	2.0	0.33	0.58	0.33	52.1
East:	Bound	dary Rd													
4	L2	All MCs	36	2.0	36	2.0	0.143	7.9	LOS A	0.0	0.0	0.00	0.09	0.00	84.0
		LV	35		35		0.143	7.9	LOS A	0.0	0.0	NA	NA	NA	84.0
		HV	1		1		0.143	7.9	LOS A	0.0	0.0	NA	NA	NA	84.0
5	T1	All MCs	238	2.0	238	2.0	0.143	0.0	LOS A	0.0	0.0	0.00	0.09	0.00	96.4
		LV	233		233		0.143	0.0	LOS A	0.0	0.0	NA	NA	NA	96.4
		HV	5		5		0.143	0.0	LOS A	0.0	0.0	NA	NA	NA	96.4
Appro	ach		274	2.0	274	2.0	0.143	1.0	NA	0.0	0.0	0.00	0.09	0.00	94.6
West:	Boun	dary Rd													
12	R2	All MCs	346	2.5	346	2.5	0.253	6.6	LOS A	1.3	9.2	0.42	0.63	0.42	51.4
		LV	338		338		0.253	6.6	LOS A	1.3	9.2	NA	NA	NA	51.4
		HV	9		9		0.253	8.2	LOS A	1.3	9.2	NA	NA	NA	50.3
Appro	ach		346	2.5	346	2.5	0.253	6.6	NA	1.3	9.2	0.42	0.63	0.42	51.4
All Ve	hicles		723	2.2	723	2.2	0.253	4.4	NA	1.3	9.2	0.25	0.42	0.25	62.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:54 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014 V2.sip9

V Site: 2 [Boundary_Cataract Stage 2_PM 2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 2 (Median) at three-way intersection with 5-lane major road. Give-way behaviour assumed at Stage 2. Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Values							
Performance Measure	Vehicles:	All MCs	Persons				
Travel Speed (Average)	km/h	109.2	109.2 km/h				
Travel Distance (Total)	veh-km/h	894.5	1073.4 pers-km/h				
Travel Time (Total)	veh-h/h	8.2	9.8 pers-h/h				
Desired Speed	km/h	109.8					
		0.99					
Congestion Coefficient		9.94 1.01					
		1.01					
Demand Flows (Total)	veh/h	907	1089 pers/h				
Arrival Flows (Total)	veh/h	907					
Percent Heavy Vehicles (Demand)	%	2.0					
Percent Heavy Venicles (Arrivals)	%	2.0					
Practical Spare Capacity	0/2	0.460					
Effective Intersection Canacity	veh/h	1973					
	VOII/II	1010					
Control Delay (Total)	veh-h/h	0.05	0.06 pers-h/h				
Control Delay (Average)	sec	0.2	0.2 sec				
Control Delay (Worst Lane by MC)	sec	7.2	47.5				
Control Delay (Worst Movement by MC)	sec	17.5	17.5 Sec				
Stop Line Delay (Average)	sec	0.0					
Idling Time (Average)	Sec	0.2					
Intersection Level of Service (LOS)	500	NA					
95% Back of Queue - Veh (Worst Lane)	veh	0.1					
95% Back of Queue - Dist (Worst Lane)	m	0.7					
Ave. Que Storage Ratio (Worst Lane)	vob/b	0.04	17 poro/b				
Effective Stops (Total)	ven/n	14	0.02				
Proportion Queued		0.02	0.02				
Performance Index		8.4	8.4				
Cost (Total)	\$/h	0.00	0.00 \$/h				
Fuel Consumption (Iotal)	L/N kg/b	0.0					
Hydrocarbons (Total)	kg/li	0.0					
Carbon Monoxide (Total)	kg/h	0.00					
NOx (Total)	ka/h	0.000					
		0.000					

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 71.2% 0.0% 0.0%

Intersection Performance - Annual Values						
Intersection renormance - Annual val	ues					
Performance Measure	Vehicles:	All MCs	Persons			

Demand Flows (Total)	veh/y	435,537 52	22,644 pers/y
Delay (Total)	veh-h/y	25	30 pers-h/y
Effective Stops (Total)	veh/y	6,746	8,095 pers/y
Travel Distance (Total)	veh-km/y	429,356 55	15,227 pers-km/y
Travel Time (Total)	veh-h/y	3,932	4,719 pers-h/y
Cost (Total)	\$/y	0	0 \$/y
Fuel Consumption (Total)	L/y	0	
Carbon Dioxide (Total)	kg/y	0	
Hydrocarbons (Total)	kg/y	0	
Carbon Monoxide (Total)	kg/y	0	
NOx (Total)	kg/y	0	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:54 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 2 [Boundary_Cataract Stage 2_PM 2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 2 (Median) at three-way intersection with 5-lane major road. Give-way behaviour assumed at Stage 2. Site Category: (None) Give-Way (Two-Way)

Vehic	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	nand lows HV] %	Ar Fl [Total veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% [Qu [Veh. veh	Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	Med	ian Stora	ge Area												
3	R2	All MCs	22	2.0	22	2.0	0.042	7.2	LOS A	0.1	0.7	0.64	0.64	0.64	7.8
		LV	22		22		0.042	7.0	LOS A	0.1	0.7	NA	NA	NA	8.0
		HV	0		0		0.042	17.5	LOS B	0.1	0.7	NA	NA	NA	3.4
Appro	ach		22	2.0	22	2.0	0.042	7.2	LOS A	0.1	0.7	0.64	0.64	0.64	7.8
West:	Boun	dary Rd													
11	T1	All MCs	885	2.0	885	2.0	0.460	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	109.8
		LV	868		868		0.460	0.0	LOS A	0.0	0.0	NA	NA	NA	109.8
		ΗV	18		18		0.460	0.0	LOS A	0.0	0.0	NA	NA	NA	109.8
Appro	ach		885	2.0	885	2.0	0.460	0.0	NA	0.0	0.0	0.00	0.00	0.00	109.8
All Vel	nicles		907	2.0	907	2.0	0.460	0.2	NA	0.1	0.7	0.02	0.02	0.02	109.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:54 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 1 [Boundary_Cataract Stage 1_PM 2036 +Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Stop (Two-Way)

Intersection Performance - Hourly Values								
Performance Measure	Vehicles:	All MCs	Persons					
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	60.6 913.2 15.1 69.0 0.88 8.65 1.14	60.6 km/h 1095.9 pers-km/h 18.1 pers-h/h					
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	903 903 2.0 2.0 0.349 180.7 2587	1084 pers/h					
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	1.21 4.8 6.9 8.8 4.0 0.9 0.0 NA	1.46 pers-h/h 4.8 sec 8.8 sec					
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	1.9 13.5 0.01 412 0.46 0.30 18.9	494 pers/h 0.46 0.30 18.9					
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	613.09 80.8 190.9 0.020 0.34 0.209	613.09 \$/h					

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 26.3% 26.7% 0.0%

Intersection Performance - Annual Values							
Performance Measure	Vehicles:	All MCs	Persons				

Demand Flows (Total)	veh/y	433,516	520,219 pers/y
Delay (Total)	veh-h/y	583	700 pers-h/y
Effective Stops (Total)	veh/y	197,717	237,260 pers/y
Travel Distance (Total)	veh-km/y	438,352	526,022 pers-km/y
Travel Time (Total)	veh-h/y	7,232	8,678 pers-h/y
Cost (Total)	\$/y	294,282	294,282 \$/y
Fuel Consumption (Total)	L/y	38,769	
Carbon Dioxide (Total)	kg/y	91,610	
Hydrocarbons (Total)	kg/y	9	
Carbon Monoxide (Total)	kg/y	164	
NOx (Total)	kg/y	101	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:55 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 1 [Boundary_Cataract Stage 1_PM 2036 +Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane.

Site Category: (None) Stop (Two-Way)

Vehic	le M	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
U		Class	FI Intal	IOWS H\/1	FI Total	lows 山\/ 1	Sath	Delay	Service	Ql [\/ah	Jeue Diet 1	Que	Stop Rate	NO. OT	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	: Cata	ract Rd													
1	L2	All MCs	117	2.0	117	2.0	0.102	6.5	LOS A	0.4	2.9	0.35	0.60	0.35	51.9
		LV	115		115		0.102	6.5	LOS A	0.4	2.9	NA	NA	NA	51.9
		HV	2		2		0.102	7.7	LOS A	0.4	2.9	NA	NA	NA	51.0
2	T1	All MCs	22	2.0	22	2.0	0.102	4.9	LOS A	0.4	2.9	0.35	0.60	0.35	52.3
		LV	22		22		0.102	4.9	LOS A	0.4	2.9	NA	NA	NA	52.4
		ΗV	0		0		0.102	6.0	LOS A	0.4	2.9	NA	NA	NA	51.5
Appro	ach		139	2.0	139	2.0	0.102	6.2	LOS A	0.4	2.9	0.35	0.60	0.35	52.0
East:	Bound	dary Rd													
4	L2	All MCs	36	2.0	36	2.0	0.155	7.9	LOS A	0.0	0.0	0.00	0.08	0.00	84.4
		LV	35		35		0.155	7.9	LOS A	0.0	0.0	NA	NA	NA	84.4
		ΗV	1		1		0.155	7.9	LOS A	0.0	0.0	NA	NA	NA	84.4
5	T1	All MCs	260	2.0	260	2.0	0.155	0.0	LOS A	0.0	0.0	0.00	0.08	0.00	97.3
		LV	255		255		0.155	0.0	LOS A	0.0	0.0	NA	NA	NA	97.3
		HV	5		5		0.155	0.0	LOS A	0.0	0.0	NA	NA	NA	97.3
Appro	ach		296	2.0	296	2.0	0.155	1.0	NA	0.0	0.0	0.00	0.08	0.00	95.6
West:	Boun	dary Rd													
12	R2	All MCs	468	2.0	468	2.0	0.349	6.9	LOS A	1.9	13.5	0.47	0.65	0.47	51.3
		LV	459		459		0.349	6.8	LOS A	1.9	13.5	NA	NA	NA	51.3
		ΗV	9		9		0.349	8.8	LOS A	1.9	13.5	NA	NA	NA	49.9
Appro	ach		468	2.0	468	2.0	0.349	6.9	NA	1.9	13.5	0.47	0.65	0.47	51.3
All Ve	hicles		903	2.0	903	2.0	0.349	4.8	NA	1.9	13.5	0.30	0.46	0.30	60.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:55 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014 V2.sip9

▽ Site: 2 [Boundary_Cataract Stage 2_PM 2036 +Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 2 (Median) at three-way intersection with 5-lane major road. Give-way behaviour assumed at Stage 2. Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Values							
Performance Measure	Vehicles:	All MCs	Persons				
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	109.1 985.9 9.0 109.8 0.99 9.93 1.01	109.1 km/h 1183.1 pers-km/h 10.8 pers-h/h				
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	998 998 2.0 2.0 0.507 93.3 1969	1197 pers/h				
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	0.07 0.2 9.1 23.4 0.0 0.2 0.1 NA	0.08 pers-h/h 0.2 sec 23.4 sec				
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	0.1 0.8 0.04 15 0.02 0.02 9.2	18 pers/h 0.02 0.02 9.2				
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	0.00 0.0 0.00 0.000 0.00 0.000	0.00 \$/h				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 75.7% 0.0% 0.0%

Intersection Performance - Annual Values							
Performance Measure	Vehicles:	All MCs	Persons				

Demand Flows (Total)	veh/y	478,990 5	74,787 pers/y
Delay (Total)	veh-h/y	32	38 pers-h/y
Effective Stops (Total)	veh/y	7,361	8,834 pers/y
Travel Distance (Total)	veh-km/y	473,243 5	67,892 pers-km/y
Travel Time (Total)	veh-h/y	4,337	5,205 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y	0 0 0 0 0 0	0 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:55 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9
▽ Site: 2 [Boundary_Cataract Stage 2_PM 2036 +Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

Staged crossing Stage 2 (Median) at three-way intersection with 5-lane major road. Give-way behaviour assumed at Stage 2. Site Category: (None) Give-Way (Two-Way)

Vehic	Vehicle Movement Performance														
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	nand lows HV] %	Ar F [Total veh/h	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% [Qu [Veh. veh	Back Of ieue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Med	ian Stora	ge Area												
3	R2	All MCs	22	2.0	22	2.0	0.050	9.1	LOS A	0.1	0.8	0.69	0.69	0.69	6.7
		LV	22		22		0.050	8.8	LOS A	0.1	0.8	NA	NA	NA	6.9
		HV	0		0		0.050	23.4	LOS B	0.1	0.8	NA	NA	NA	2.6
Appro	ach		22	2.0	22	2.0	0.050	9.1	LOS A	0.1	0.8	0.69	0.69	0.69	6.7
West:	Boun	dary Rd													
11	T1	All MCs	976	2.0	976	2.0	0.507	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	109.7
		LV	956		956		0.507	0.0	LOS A	0.0	0.0	NA	NA	NA	109.7
		HV	20		20		0.507	0.0	LOS A	0.0	0.0	NA	NA	NA	109.7
Appro	ach		976	2.0	976	2.0	0.507	0.0	NA	0.0	0.0	0.00	0.00	0.00	109.7
All Vel	hicles		998	2.0	998	2.0	0.507	0.2	NA	0.1	0.8	0.02	0.02	0.02	109.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:55 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Boundary_Old Pitt Town_AM Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Roundabout

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	51.5 1172.3 22.8 60.0 0.86 8.42 1.17	51.5 km/h 1406.7 pers-km/h 27.3 pers-h/h							
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	1147 1147 2.0 2.0 0.378 124.9 3036	1377 pers/h							
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	2.36 7.4 8.1 13.1 5.4 2.0 0.1 LOS A	2.83 pers-h/h 7.4 sec 13.1 sec							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	2.5 17.6 0.01 691 0.60 0.54 43.1	829 pers/h 0.60 0.54 43.1							
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	1070.70 105.0 248.1 0.021 0.28 0.284	1070.70 \$/h							

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 1.3 %

Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 2.1% 1.2% 0.6%

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Persons						
Demand Flows (Total)	veh/y	550,737	660,884 pers/y						
Delay (Total) veh-h/y 1,132 1,359 pers-h/y									

Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh-km/y veh-h/y	331,667 562,683 10,933	398,000 pers/y 675,220 pers-km/y 13,120 pers-h/y
Cost (Total)	\$/y	513,937	513,937 \$/y
Fuel Consumption (Total)	L/y	50,400	
Carbon Dioxide (Total)	kg/y	119,080	
Hydrocarbons (Total)	kg/y	10	
Carbon Monoxide (Total)	kg/y	136	
NOx (Total)	kg/y	137	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:56 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

W Site: 101 [Boundary_Old Pitt Town_AM Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Roundabout

Vehicle Movement Performance															
Mov	Turn	Mov	Den	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
TD		Class	F [Total	lows H\/ L	FI [Total	lows H\/1_	Satn	Delay	Service	Qı [Veb	Jeue Dist 1	Que	Stop	No. of	Speed
			veh/h	<u>%</u>	veh/h	<u>%</u>	v/c	sec		veh	m		Rate	- Cycles	km/h
South	: Bou	ndary Rd													
1	L2	All MCs	24	2.0	24	2.0	0.281	5.6	LOS A	1.8	12.5	0.42	0.55	0.42	51.6
		LV	24		24		0.281	5.6	LOS A	1.8	12.5	NA	NA	NA	51.6
		HV	0		0		0.281	6.8	LOS A	1.8	12.5	NA	NA	NA	50.8
2	T1	All MCs	202	2.0	202	2.0	0.281	5.8	LOS A	1.8	12.5	0.42	0.55	0.42	52.0
		LV	198		198		0.281	5.8	LOS A	1.8	12.5	NA	NA	NA	52.0
		ΗV	4		4		0.281	7.0	LOS A	1.8	12.5	NA	NA	NA	51.1
3	R2	All MCs	92	2.0	92	2.0	0.281	9.1	LOS A	1.8	12.5	0.42	0.55	0.42	51.3
		LV	90		90		0.281	9.0	LOS A	1.8	12.5	NA	NA	NA	51.3
		ΗV	2		2		0.281	10.3	LOS B	1.8	12.5	NA	NA	NA	50.4
Appro	bach		318	2.0	318	2.0	0.281	6.7	LOS A	1.8	12.5	0.42	0.55	0.42	51.8
Fast	Old P	itt Town F	۶d												
4	12	All MCs	89	20	89	2.0	0 239	7 0	LOSA	14	10 1	0.59	0.64	0.59	51.3
		IV	88	2.0	88	2.0	0.239	7.0	LOSA	1.4	10.1	NA	NA	NA	51.3
		HV	2		2		0.239	9.7	LOSA	1.4	10.1	NA	NA	NA	49.4
5	T1	All MCs	87	20	87	20	0 239	72	LOSA	14	10.1	0.59	0.64	0.59	51.6
	•••	IV	86		86		0.239	7.2	LOSA	1.4	10.1	NA	NA	NA	51.7
		HV	2		2		0.239	9.9	LOSA	1.4	10.1	NA	NA	NA	49.8
6	R2	All MCs	38	20	38	20	0 239	10.5	LOSB	14	10.1	0.59	0.64	0.59	50.9
Ū	1.2	IV	37	2.0	37	2.0	0.239	10.4	LOSB	1.4	10.1	NA	NA	NA	51.0
		HV	1		1		0.239	13.1	LOSB	1.4	10.1	NA	NA	NA	49.1
Appro	bach		215	2.0	215	2.0	0.239	7.7	LOSA	1.4	10.1	0.59	0.64	0.59	51.4
North	· Bour	adany Pd													
7	. Doui		60	2.0	60	2.0	0.279	6.0		25	17.6	0.50	0.61	0.50	E1 0
1	LZ		69	2.0	69	2.0	0.370	0.9		2.0	17.0	0.59	0.01	0.59	51.5
			1		1		0.378	0.0		2.5	17.0				31.4 79.6
•	T 4		050	~ ~	050	~ ~	0.570	9.4	LOGA	2.5	17.0	0.50	0.01	0.50	49.0
8	1.1		250	2.0	256	2.0	0.378	7.0	LOSA	2.5	17.0	0.59	0.61	0.59	51.7
			251		251		0.378	7.0	LOSA	2.5	17.0	NA	NA	NA	51.8
•	50		5	0.0	5	0.0	0.378	9.5	LUSA	2.5	17.0	NA	NA 0.01	NA	49.9
9	R2	All MCs	40	2.0	40	2.0	0.378	10.3	LOSB	2.5	17.6	0.59	0.61	0.59	51.0
			39		39		0.378	10.2	LOSB	2.5	17.6	NA	NA	NA	51.0
Appro	ach	ΗV	365	20	365	20	0.378	12.8		2.5	17.0	0.50	0.61	0.50	49.3
Appro	acri		305	2.0	305	2.0	0.378	7.5	LUSA	2.5	17.0	0.59	0.01	0.59	51.0
West	Old F	Pitt Town	Rd												
10	L2	All MCs	29	2.0	29	2.0	0.263	6.7	LOS A	1.6	11.1	0.55	0.63	0.55	51.0
		LV	29		29		0.263	6.7	LOS A	1.6	11.1	NA	NA	NA	51.0
		HV	1		1		0.263	9.1	LOS A	1.6	11.1	NA	NA	NA	49.3
11	T1	All MCs	129	2.0	129	2.0	0.263	6.9	LOS A	1.6	11.1	0.55	0.63	0.55	51.3
		LV	127		127		0.263	6.9	LOS A	1.6	11.1	NA	NA	NA	51.4
		ΗV	3		3		0.263	9.3	LOS A	1.6	11.1	NA	NA	NA	49.7
12	R2	All MCs	91	2.0	91	2.0	0.263	10.2	LOS B	1.6	11.1	0.55	0.63	0.55	50.6

L	/	89		89		0.263	10.1	LOS B	1.6	11.1	NA	NA	NA	50.7
Н	V	2		2		0.263	12.6	LOS B	1.6	11.1	NA	NA	NA	49.0
Approach		249	2.0	249	2.0	0.263	8.1	LOS A	1.6	11.1	0.55	0.63	0.55	51.0
All Vehicles		1147	2.0	1147	2.0	0.378	7.4	LOS A	2.5	17.6	0.54	0.60	0.54	51.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:56 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Boundary_Old Pitt Town_PM Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Roundabout

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	51.9 945.6 18.2 60.0 0.87 8.51 1.16	51.9 km/h 1134.8 pers-km/h 21.8 pers-h/h							
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	926 926 2.0 2.0 0.271 213.2 3413	1112 pers/h							
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	1.70 6.6 7.3 11.5 5.3 1.3 0.0 LOS A	2.04 pers-h/h 6.6 sec 11.5 sec							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	1.7 11.9 0.01 519 0.56 0.44 32.6	622 pers/h 0.56 0.44 32.6							
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	855.77 83.9 198.4 0.017 0.23 0.227	855.77 \$/h							

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.9 %

Number of Iterations: 4 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 0.0% 1.2% 0.7%

Intersection Performance - Annual Values										
Performance Measure	Vehicles:	All MCs	Persons							
Demand Flows (Total)	veh/y	444,632	533,558 pers/y							
Delay (Total) veh-h/y 817 980 pers-h/y										

Effective Stops (Total)	veh/y	248,901	298,682 pers/y	
Travel Distance (Total)	veh-km/y	453,900	544,680 pers-km/y	
Travel Time (Total)	veh-h/y	8,738	10,485 pers-h/y	
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	410,770 40,295 95,208 8 109 109	410,770 \$/y	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:57 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

W Site: 101 [Boundary_Old Pitt Town_PM Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Roundabout

Vehicle Movement Performance															
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	F [Total	IOWS H\/ L	FI TotaL	IOWS H\/1_	Satn	Delay	Service	Qı [Veh	Jeue Dist 1	Que	Stop Rate	No. of	Speed
			veh/h	% %	veh/h	<u>%</u>	v/c	sec		veh	m		Rate	- Oycles	km/h
South	: Bou	ndary Rd													
1	L2	All MCs	71	2.0	71	2.0	0.271	5.8	LOS A	1.7	11.9	0.45	0.56	0.45	51.8
		LV	69		69		0.271	5.8	LOS A	1.7	11.9	NA	NA	NA	51.8
		ΗV	1		1		0.271	7.2	LOS A	1.7	11.9	NA	NA	NA	50.7
2	T1	All MCs	166	2.0	166	2.0	0.271	6.0	LOS A	1.7	11.9	0.45	0.56	0.45	52.2
		LV	163		163		0.271	5.9	LOS A	1.7	11.9	NA	NA	NA	52.2
		ΗV	3		3		0.271	7.4	LOS A	1.7	11.9	NA	NA	NA	51.1
3	R2	All MCs	59	2.0	59	2.0	0.271	9.3	LOS A	1.7	11.9	0.45	0.56	0.45	51.4
		LV	58		58		0.271	9.2	LOS A	1.7	11.9	NA	NA	NA	51.4
		HV	1		1		0.271	10.7	LOS B	1.7	11.9	NA	NA	NA	50.4
Appro	bach		296	2.0	296	2.0	0.271	6.6	LOS A	1.7	11.9	0.45	0.56	0.45	51.9
Fast	Old P	itt Town F	Ъ												
4	12		75	2.0	75	2.0	0 247	6.0		14	10.3	0.46	0.58	0.46	51.6
-	LZ		73	2.0	73	2.0	0.247	6.0		1.4	10.3	0.+0 ΝΔ	0.00 NA	0.40 ΝΔ	51.0
		LV HV	1		1		0.247	7.6	LOSA	1.4	10.3	NA	NA	NA	50.5
5	Т1		121	2.0	121	20	0.247	6.2		1.1	10.3	0.46	0.58	0.46	52.0
5			110	2.0	110	2.0	0.247	6.1		1.4	10.3	0.40 NA	0.30 NA	0.40 NA	52.0
		LV HV	2		2		0.247	7.8	LOSA	1.4	10.3	NA	NA	NA	50.9
6	D۵		63	2.0	63	20	0.247	0.5		1.4	10.3	0.46	0.58	0.46	51.3
0	172		62	2.0	62	2.0	0.247	9.5		1.4	10.3	0.40 NA	0.30 NA	0.40 NA	51.3
			1		1		0.247	3. 4 11 1		1.4	10.3				50.2
Appro	bach	110	259	20	259	20	0.247	6.9	LOSA	1.4	10.3	0.46	0.58	0.46	51.7
, appre	Juon		200	2.0	200	2.0	0.211	0.0	2007		10.0	0.10	0.00	0.10	01.1
North	: Bour	ndary Rd													
7	L2	All MCs	52	2.0	52	2.0	0.218	5.7	LOS A	1.2	8.9	0.41	0.53	0.41	52.1
		LV	51		51		0.218	5.7	LOS A	1.2	8.9	NA	NA	NA	52.2
		HV	1		1		0.218	7.0	LOS A	1.2	8.9	NA	NA	NA	51.2
8	T1	All MCs	179	2.0	179	2.0	0.218	5.9	LOS A	1.2	8.9	0.41	0.53	0.41	52.6
		LV	175		175		0.218	5.8	LOS A	1.2	8.9	NA	NA	NA	52.6
		ΗV	4		4		0.218	7.2	LOS A	1.2	8.9	NA	NA	NA	51.6
9	R2	All MCs	8	2.0	8	2.0	0.218	9.1	LOS A	1.2	8.9	0.41	0.53	0.41	51.8
		LV	8		8		0.218	9.1	LOS A	1.2	8.9	NA	NA	NA	51.8
		HV	0		0		0.218	10.4	LOS B	1.2	8.9	NA	NA	NA	50.9
Appro	bach		239	2.0	239	2.0	0.218	5.9	LOS A	1.2	8.9	0.41	0.53	0.41	52.4
West:	Old F	Pitt Town	Rd												
10	L2	All MCs	9	2.0	9	2.0	0.134	6.2	LOS A	0.7	5.1	0.47	0.59	0.47	51.4
		LV	9		9		0.134	6.2	LOS A	0.7	5.1	NA	NA	NA	51.4
		ΗV	0		0		0.134	8.1	LOS A	0.7	5.1	NA	NA	NA	50.1
11	T1	All MCs	86	2.0	86	2.0	0,134	6.4	LOS A	0.7	5.1	0.47	0.59	0.47	51.8
		LV	85		85		0.134	6.3	LOSA	0.7	5.1	NA	NA	NA	51.8
		ΗV	2		2		0.134	8.2	LOS A	0.7	5.1	NA	NA	NA	50.5
12	R2	All MCs	37	2.0	37	2.0	0.134	9.7	LOS A	0.7	5.1	0.47	0.59	0.47	51.1

	LV	36		36		0.134	9.6	LOS A	0.7	5.1	NA	NA	NA	51.1
	ΗV	1		1		0.134	11.5	LOS B	0.7	5.1	NA	NA	NA	49.8
Approach		133	2.0	133	2.0	0.134	7.3	LOS A	0.7	5.1	0.47	0.59	0.47	51.6
All Vehicles		926	2.0	926	2.0	0.271	6.6	LOS A	1.7	11.9	0.44	0.56	0.44	51.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:57 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Boundary_Old Pitt Town_AM 2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Practical Cycle Time) Design Life Analysis (Final Year): Results for 14 years

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	36.4 3240.0 89.1 60.0 0.61 5.62 1.65	36.4 km/h 3888.0 pers-km/h 107.0 pers-h/h							
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	3171 3171 2.0 2.0 0.879 2.4 3608	3806 pers/h							
		04.04	44.05							
Control Delay (Iotal) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	34.21 38.8 51.4 51.4 2.3 36.5 30.7 LOS D	41.05 pers-h/h 38.8 sec 51.4 sec							
95% Back of Queue - Veh (Worst Lane)	veh	19.3								
95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	m veh/h	137.3 0.17 2931 0.92 0.98 263.7	3517 pers/h 0.92 0.98 263.7							
	ф /ь	2074 44	2074 44 ¢/b							
Cost (Iotal) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/n L/h kg/h kg/h kg/h kg/h	3971.44 330.0 779.4 0.070 0.85 0.849	39/1.44 \$/h							

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 0.0% 6.8% 0.0%

Intersection Performance - Annual Values							
Performance Measure	Vehicles:	All MCs	Persons				
Demand Flows (Total)	veh/y	1,522,237	1,826,684 pers/y				
Delay (Total)	veh-h/y	16,420	19,704 pers-h/y				
Effective Stops (Total)	veh/y	1,406,909	1,688,291 pers/y				

Travel Distance (Total)	veh-km/y	1,555,189	1,866,226 pers-km/y
Travel Time (Total)	veh-h/y	42,783	51,340 pers-h/y
Cost (Total)	\$/y	1,906,291	1,906,291 \$/y
Fuel Consumption (Total)	L/y	158,407	
Carbon Dioxide (Total)	kg/y	374,132	
Hydrocarbons (Total)	kg/y	34	
Carbon Monoxide (Total)	kg/y	410	
NOx (Total)	kg/y	407	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:58 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Boundary_Old Pitt Town_AM 2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Practical Cycle Time) Design Life Analysis (Final Year): Results for 14 years

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI [Total	lows 山\/ 1	FI Total	lows u\/1	Satn	Delay	Service	Qı [Vob	Jeue Dict 1	Que	Stop	No. of	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	: Bou	ndary Rd													
1	L2	All MCs	67	2.0	67	2.0	0.594	20.5	LOS C	10.8	77.2	0.92	0.79	0.92	39.6
		LV	66		66		0.594	20.5	LOS C	10.8	77.2	NA	NA	NA	39.6
		ΗV	1		1		0.594	20.5	LOS C	10.8	77.2	NA	NA	NA	39.6
2	T1	All MCs	559	2.0	559	2.0	0.594	29.5	LOS C	10.8	77.2	0.92	0.79	0.92	41.0
		LV	547		547		0.594	29.5	LOS C	10.8	77.2	NA	NA	NA	41.0
		HV	11		11		0.594	29.5	LOS C	10.8	77.2	NA	NA	NA	41.0
3	R2	All MCs	253	2.0	253	2.0	0.821	46.5	LOS D	10.8	76.9	1.00	0.96	1.25	33.4
		LV	248		248		0.821	46.5	LOS D	10.8	76.9	NA	NA	NA	33.4
		HV	5		5		0.821	46.5	LOS D	10.8	76.9	NA	NA	NA	33.4
Appro	bach		879	2.0	879	2.0	0.821	33.7	LOS C	10.8	77.2	0.95	0.84	1.02	38.4
East:	Old P	itt Town F	۲d												
4	12	All MCs	247	2.0	247	2.0	0.741	34.9	LOSIC	11.9	84.5	0.99	0.89	1.08	35.8
		LV	242		242		0.741	34.9	LOS C	11.9	84.5	NA	NA	NA	35.8
		ΗV	5		5		0.741	34.9	LOS C	11.9	84.5	NA	NA	NA	35.8
5	T1	All MCs	241	2.0	241	2.0	0.741	43.2	LOS D	11.9	84.5	1.00	0.89	1.14	36.4
		LV	237		237		0.741	43.2	LOS D	11.9	84.5	NA	NA	NA	36.4
		HV	5		5		0.741	43.2	LOS D	11.9	84.5	NA	NA	NA	36.4
6	R2	All MCs	105	2.0	105	2.0	0.368	39.9	LOS D	3.8	27.2	0.94	0.77	0.94	35.5
-		LV	103		103		0.368	39.9	LOS D	3.8	27.2	NA	NA	NA	35.5
		ΗV	2		2		0.368	39.9	LOS D	3.8	27.2	NA	NA	NA	35.5
Appro	bach		594	2.0	594	2.0	0.741	39.2	LOS D	11.9	84.5	0.98	0.87	1.08	36.0
North	. Bour	ndary Rd													
7	12		102	2.0	102	2.0	0.841	20.8	1.05.0	10.3	137.3	1 00	0.00	1 10	36.1
1	LZ		182	2.0	182	2.0	0.041	29.0		19.5	137.3	NΔ	0.99 NA	1.19 ΝΔ	36.1
		LV HV	4		4		0.841	29.8		19.3	137.3	NA	NA	NA	36.1
8	Т1		707	20	707	20	* 0 8/1	30.2		10.0	137.3	1 00	1.00	1 20	37.4
0			693	2.0	693	2.0	* 0.041	39.2		19.3	137.3	NA	NA	NA	37.4
		HV	14		14		0.841	39.2	LOS D	19.3	137.3	NA	NA	NA	37.4
Q	R2		111	20	111	20	0 359	38.8		4.0	28.3	0.93	0.77	0.93	35.0
	112	IV	108	2.0	108	2.0	0.359	38.8		4.0	28.3	NA	NA	NA	35.9
		HV	2		2		0.359	38.8	LOS D	4.0	28.3	NA	NA	NA	35.9
Appro	bach		1010	2.0	1010	2.0	0.841	37.4	LOS D	19.3	137.3	0.99	0.97	1.17	37.0
West [.]	Old F	Pitt Town I	Rd												
10	12		Q1	2.0	Q1	20	*0.846	35 /		10.1	71 7	1 00	1 01	1 32	33 E
10	LZ		01 20	2.0	01 20	2.0	* 0.040 * 0 8/6	35.4		10.1	71 7	NΔ	1.01 ΝΙΔ	1.32 NA	33 E
		LV HV	2		2		0.846	35.4		10.1	717	NA	NA	NA	33.6
11	τ1		250	20	350	20	0.046	17.0		10.1	71 7	1.00	1.00	1 22	34.7
			350	2.0	351	2.0	0.040 0 8/6	47.0 <u>4</u> 7.0		10.1	71 7	ΝΔ	1.00 NA	1.55 NA	34.1 3 <u>4</u> 7
		HV	7		7		0.846	47.0	LOS D	10.1	71.7	NA	NA	NA	34.7

12	R2	All MCs	250	2.0	250	2.0	*0.879	51.4	LOS D	11.4	81.1	1.00	1.03	1.39	32.0
		LV	245		245		*0.879	51.4	LOS D	11.4	81.1	NA	NA	NA	32.0
		HV	5		5		0.879	51.4	LOS D	11.4	81.1	NA	NA	NA	32.0
Approa	ach		690	2.0	690	2.0	0.879	47.2	LOS D	11.4	81.1	1.00	1.01	1.35	33.5
All Vel	nicles		3171	2.0	3171	2.0	0.879	38.8	LOS D	19.3	137.3	0.98	0.92	1.15	36.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:58 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Boundary_Old Pitt Town_PM 2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 60 seconds (Site Practical Cycle Time) Design Life Analysis (Final Year): Results for 14 years

Intersection Performance - Hourly Values								
Performance Measure	Vehicles:	All MCs	Persons					
Travel Speed (Average)	km/h	39.8	39.8 km/h					
Travel Distance (Total)	veh-km/h	2615.2	3138.2 pers-km/h					
Travel Time (Total)	veh-h/h	65.7	78.8 pers-h/h					
Desired Speed	km/h	60.0						
Speed Efficiency		0.66						
Congestion Coefficient		0.20						
Congestion Coencient		1.01						
Demand Flows (Total)	veh/h	2560	3072 pers/h					
Arrival Flows (Total)	veh/h	2560						
Percent Heavy Vehicles (Demand)	%	2.0						
Percent Heavy Vehicles (Arrivals)	%	2.0						
Degree of Saturation	0/	0.772						
Practical Spare Capacity	% 	10.0						
Enective intersection Capacity	ven/n	5510						
Control Delay (Total)	veh-h/h	21.34	25.61 pers-h/h					
Control Delay (Average)	sec	30.0	30.0 sec					
Control Delay (Worst Lane by MC)	sec	37.1						
Control Delay (Worst Movement by MC)	sec	37.1	37.1 sec					
Geometric Delay (Average)	sec	2.3						
Stop-Line Delay (Average)	sec	27.7						
Idling Time (Average)	sec	22.0						
Intersection Level of Service (LOS)		203 0						
95% Back of Queue - Veh (Worst Lane)	veh	10.6						
95% Back of Queue - Dist (Worst Lane)	m	75.5						
Ave. Que Storage Ratio (Worst Lane)		0.09						
Effective Stops (Total)	veh/h	2291	2749 pers/h					
Effective Stop Rate		0.89	0.89					
Proportion Queued		0.99	0.99					
Performance Index		1/4.9	174.9					
Cost (Total)	\$/h	2966.90	2966.90 \$/h					
Fuel Consumption (Total)	L/h	258.3						
Carbon Dioxide (Total)	kg/h	610.2						
Hydrocarbons (Total)	kg/h	0.054						
Carbon Monoxide (Total)	kg/h	0.68						
NUX (IOTAI)	кg/h	0.677						

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 0.0% 16.8% 0.0%

Intersection Performance - Annual Values								
Performance Measure	Vehicles:	All MCs	Persons					
Demand Flows (Total)	veh/y	1,228,962	1,474,754 pers/y					
Delay (Total)	veh-h/y	10,243	12,291 pers-h/y					
Effective Stops (Total)	veh/y	1,099,736	1,319,683 pers/y					

Travel Distance (Total)	veh-km/y	1,255,277	1,506,333 pers-km/y
Travel Time (Total)	veh-h/y	31,519	37,823 pers-h/y
Cost (Total)	\$/y	1,424,111	1,424,111 \$/y
Fuel Consumption (Total)	L/y	124,004	
Carbon Dioxide (Total)	kg/y	292,902	
Hydrocarbons (Total)	kg/y	26	
Carbon Monoxide (Total)	kg/y	324	
NOx (Total)	kg/y	325	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:59 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Boundary_Old Pitt Town_PM 2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 60 seconds (Site Practical Cycle Time) Design Life Analysis (Final Year): Results for 14 years

Vehicle Movement Performance															
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI [Total	lows 山\/ 1	FI Total	lows u\/1	Satn	Delay	Service	Qı [Vob	ueue Dict 1	Que	Stop	No. of	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Nate	Cycles	km/h
South	: Bou	ndary Rd													
1	L2	All MCs	195	2.0	195	2.0	0.760	24.2	LOS C	10.6	75.5	0.98	0.92	1.14	39.5
		LV	191		191		0.760	24.2	LOS C	10.6	75.5	NA	NA	NA	39.5
		HV	4		4		0.760	24.2	LOS C	10.6	75.5	NA	NA	NA	39.5
2	T1	All MCs	460	2.0	460	2.0	0.760	30.2	LOS C	10.6	75.5	0.99	0.92	1.16	41.1
		LV	451		451		0.760	30.2	LOS C	10.6	75.5	NA	NA	NA	41.1
		HV	9		9		0.760	30.2	LOS C	10.6	75.5	NA	NA	NA	41.1
3	R2	All MCs	163	2.0	163	2.0	*0.736	37.1	LOS D	5.2	36.9	1.00	0.90	1.22	36.5
		LV	160		160		*0.736	37.1	LOS D	5.2	36.9	NA	NA	NA	36.5
		HV	3		3		0.736	37.1	LOS D	5.2	36.9	NA	NA	NA	36.5
Appro	bach		818	2.0	818	2.0	0.760	30.1	LOS C	10.6	75.5	0.99	0.92	1.17	39.7
Fast:	Old P	itt Town F	۶d												
4	12		207	2.0	207	20	0 772	28.0	1.05.0	9.6	68 5	1 00	0.94	1 10	38.5
-	LZ	IV	207	2.0	207	2.0	0.772	28.0		9.6	68.5	NA	NA	NA	38.5
		HV	4		4		0.772	28.0	LOS C	9.6	68.5	NA	NA	NA	38.5
5	Т1	All MCs	335	20	335	20	*0772	32.9	1.05.0	9.6	68.5	1 00	0.93	1 22	40.0
	• •	IV	328	2.0	328	2.0	* 0.772	32.9		9.6	68.5	NA	NA	NA	40.0
		HV	7		7		0.772	32.9	LOS C	9.6	68.5	NA	NA	NA	40.0
6	R2	All MCs	175	2.0	175	2.0	*0.690	35.3	LOSID	54	38.3	1.00	0.87	1.14	37.2
Ū	1.2	LV	171	2.0	171	2.0	* 0.690	35.3	LOS D	5.4	38.3	NA	NA	NA	37.2
		ΗV	3		3		0.690	35.3	LOS D	5.4	38.3	NA	NA	NA	37.2
Appro	bach		716	2.0	716	2.0	0.772	32.1	LOS C	9.6	68.5	1.00	0.92	1.19	38.8
North	· Pour	dony Dd													
	. Dour		440	0.0	4.40	~ ~	0 70 4	00.5	100.0	40.4	70.0	0.00	0.00	4.45	00.5
1	LZ		143	2.0	143	2.0	0.764	23.5		10.1	72.2	0.99	0.93	1.15	39.5
			140		140 2		0.764	23.5		10.1	12.2 72.2				39.5
0	τ4		405	2.0	405	2.0	0.704	20.0		10.1	72.2	4.00	0.02	1 4 7	39.5
8	11		495	2.0	495	2.0	* 0.764	29.9		10.1	72.2	1.00	0.93	1.17 NA	41.0
			400		405		* 0.704 0.764	29.9		10.1	72.2				41.0
0			10	0.0	00	0.0	0.704	29.9	100.0	10.1	12.2	0.00	0.70	0.00	41.0
9	R2		23	2.0	23	2.0	0.105	32.5		0.6	4.0	0.92	0.70	0.92 NA	38.2
			23		23		0.105	32.5		0.0	4.0				38.2
Annro	hach	110	660	20	660	20	0.103	28.6		10.1	72.2	0.99	0.92	1 16	40.6
Appro	aon		000	2.0	000	2.0	0.104	20.0	200.0	10.1	12.2	0.00	0.02	1.10	40.0
West:	Old F	Pitt Town	Rd												
10	L2	All MCs	26	2.0	26	2.0	0.434	21.1	LOS C	3.7	26.6	0.94	0.76	0.94	40.6
		LV	26		26		0.434	21.1	LOS C	3.7	26.6	NA	NA	NA	40.6
		HV	1		1		0.434	21.1	LOS C	3.7	26.6	NA	NA	NA	40.6
11	T1	All MCs	239	2.0	239	2.0	0.434	27.1	LOS C	3.7	26.6	0.95	0.75	0.95	41.9
		LV	234		234		0.434	27.1	LOS C	3.7	26.6	NA	NA	NA	41.9
		HV	5		5		0.434	27.1	LOS C	3.7	26.6	NA	NA	NA	41.9

12	R2	All MCs	102	2.0	102	2.0	0.402	32.9	LOS C	2.9	20.7	0.96	0.77	0.96	38.1
		LV	100		100		0.402	32.9	LOS C	2.9	20.7	NA	NA	NA	38.1
		ΗV	2		2		0.402	32.9	LOS C	2.9	20.7	NA	NA	NA	38.1
Approa	ach		367	2.0	367	2.0	0.434	28.2	LOS C	3.7	26.6	0.95	0.76	0.95	40.7
All Veh	nicles		2560	2.0	2560	2.0	0.772	30.0	LOS C	10.6	75.5	0.99	0.89	1.14	39.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:03:59 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Boundary_Old Pitt Town_AM 2036 + Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site Practical Cycle Time)

Intersection Performance - Hourly Va	lues		
Performance Measure	Vehicles:	All MCs	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	32.9 3690.2 112.3 60.0 0.55 4.98 1.83	32.9 km/h 4428.2 pers-km/h 134.7 pers-h/h
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	3612 3612 2.0 2.0 0.897 0.3 4025	4334 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	50.67 50.5 67.4 67.4 2.1 48.4 42.0 LOS D	60.80 pers-h/h 50.5 sec 67.4 sec
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	33.6 239.1 0.29 3359 0.93 0.97 374.4	4030 pers/h 0.93 0.97 374.4
	A //	1000.10	
Cost (lotal) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	ÿ/n L/h kg/h kg/h kg/h kg/h	4929.16 388.6 917.6 0.084 0.99 0.976	4929.16 \$/h

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 7.8% 2.5% 0.0%

Intersection Performance - Annual Values								
Performance Measure	Vehicles:	All MCs	Persons					
Demand Flows (Total)	veh/y	1,733,558	2,080,270 pers/y					
Delay (Total)	veh-h/y	24,321	29,185 pers-h/y					
Effective Stops (Total)	veh/y	1,612,155	1,934,586 pers/y					
Travel Distance (Total)	veh-km/y	1,771,292	2,125,550 pers-km/y					

Cost (Total) \$/y 2,365,997 2,365,997 \$/y Fuel Consumption (Total) L/y 186,505 2 2 2 2 2 2 2 2 2 3 2 3 2 3 <th>Travel Time (Total)</th> <th>veh-h/y</th> <th>53,890</th> <th>64,668 pers-h/y</th> <th></th>	Travel Time (Total)	veh-h/y	53,890	64,668 pers-h/y	
NOx (Total) kg/y 468	Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	2,365,997 186,505 440,458 40 476 468	2,365,997 \$/y	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:00 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Boundary_Old Pitt Town_AM 2036 + Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 110 seconds (Site Practical Cycle Time)

Vehicle Movement Performance															
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H Total	lows HV/1	Fl [Total]	lows H\/ 1	Satn	Delay	Service	Qu [\/eh	eue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Tato	Cycles	km/h
South	: Boui	ndary Rd													
1	L2	All MCs	71	2.0	71	2.0	0.530	21.8	LOS C	15.3	109.0	0.86	0.76	0.86	38.3
		LV	69		69		0.530	21.8	LOS C	15.3	109.0	NA	NA	NA	38.3
		ΗV	1		1		0.530	21.8	LOS C	15.3	109.0	NA	NA	NA	38.3
2	T1	All MCs	642	2.0	642	2.0	0.530	33.0	LOS C	15.4	109.7	0.86	0.75	0.86	39.5
		LV	629		629		0.530	33.0	LOS C	15.4	109.7	NA	NA	NA	39.5
		ΗV	13		13		0.530	33.0	LOS C	15.4	109.7	NA	NA	NA	39.5
3	R2	All MCs	267	2.0	267	2.0	0.861	62.6	LOS E	15.8	112.4	1.00	0.97	1.24	29.1
		LV	262		262		0.861	62.6	LOS E	15.8	112.4	NA	NA	NA	29.1
		ΗV	5		5		0.861	62.6	LOS E	15.8	112.4	NA	NA	NA	29.1
Appro	ach		980	2.0	980	2.0	0.861	40.3	LOS D	15.8	112.4	0.90	0.81	0.96	35.9
East:	Old P	itt Town F	Rd												
4	12	All MCs	263	2.0	263	2.0	0.798	49.3	LOSID	17.2	122.6	1.00	0.91	1.12	31.2
		IV	258	2.0	258	2.0	0.798	49.3		17.2	122.6	NA	NA	NA	31.2
		HV	5		-00		0.798	49.3	LOS D	17.2	122.6	NA	NA	NA	31.2
5	T1	All MCs	254	20	254	20	0 798	59.3	LOSE	17.2	122.6	1 00	0.93	1 16	31.6
Ŭ	• •	IV	249	2.0	249	2.0	0.798	59.3	LOSE	17.2	122.6	NA	NA	NA	31.6
		HV	5		5		0.798	59.3	LOS E	17.2	122.6	NA	NA	NA	31.6
6	R2	All MCs	111	20	111	20	0.377	51.6		54	38.8	0 94	0 78	0 94	31.9
	112	IV	108	2.0	108	2.0	0.377	51.6		5.4	38.8	NA	NA	NA	31.9
		HV	2		2		0.377	51.6	LOS D	5.4	38.8	NA	NA	NA	31.9
Appro	ach		627	2.0	627	2.0	0.798	53.8	LOS D	17.2	122.6	0.99	0.90	1.10	31.5
North	Bour	ndary Rd													
7	10		202	2.0	202	2.0	0 974	24.0	1.08.0	22.6	220.4	1.00	0.00	1 1 1	22.2
ľ	LZ		108	2.0	108	2.0	0.074	34.0		33.0	239.1	1.00 NA	0.99 NA	1.14 ΝΔ	33.2
		LV HV	130		130		0.074	34.8		33.6	239.1	NA	NA	NA	33.2
Q	Τ1		080	20	080	20	* 0.874	51.0		33.6	230.1	1.00	1.01	1 15	34.3
0			0/1	2.0	0/1	2.0	* 0.074	51.2		33.6	239.1	NA	1.01 NA	1.13 NA	34.3
			10		10		0.874	51.2		33.6	239.1	ΝA		NΔ	34.3
0	50		117	2.0	117	2.0	0.074	55.2		50.0 E 7	40.6	0.04	0.79	0.04	22.2
9	RΖ		117	2.0	117	2.0	0.376	55.2		5.7 5.7	40.0	0.94 NA	0.70	0.94 NA	32.Z
			2		2		0.376	55.2		5.7	40.0				32.2
Appro	ach	110	1279	2.0	1279	2.0	0.874	49.0		33.6	239.1	0.99	0.98	1.13	33.9
				2.0	1210	2.0	0.071	10.0	200 8	00.0	200.1	0.00	0.00	1.10	00.0
West:	Old F	vitt Iown I	Rd												
10	L2	All MCs	85	2.0	85	2.0	* 0.886	49.7	LOS D	14.5	103.2	1.00	1.04	1.32	28.9
		LV	84		84		* 0.886	49.7		14.5	103.2	NA	NA	NA	28.9
		HV	2		2		0.886	49.7	LOS D	14.5	103.2	NA	NA	NA	28.9
11	T1	All MCs	377	2.0	377	2.0	0.886	65.3	LOS E	14.5	103.2	1.00	1.03	1.32	29.8
		LV	369		369		0.886	65.3	LOS E	14.5	103.2	NA	NA	NA	29.8
		HV	8		8		0.886	65.3	LOS E	14.5	103.2	NA	NA	NA	29.8
12	R2	All MCs	263	2.0	263	2.0	* 0.897	67.4	LOS E	16.3	115.7	1.00	1.02	1.33	28.1

	LV	258		258		* 0.897	67.4	LOS E	16.3	115.7	NA	NA	NA	28.1
	ΗV	5		5		0.897	67.4	LOS E	16.3	115.7	NA	NA	NA	28.1
Approach		725	2.0	725	2.0	0.897	64.2	LOS E	16.3	115.7	1.00	1.03	1.32	29.0
All Vehicles		3612	2.0	3612	2.0	0.897	50.5	LOS D	33.6	239.1	0.97	0.93	1.12	32.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:00 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Boundary_Old Pitt Town_PM 2036 + Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Practical Cycle Time)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	38.8 3037.9 78.4 60.0 0.65 6.07 1.55	38.8 km/h 3645.4 pers-km/h 94.0 pers-h/h							
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % % veh/h	2974 2974 2.0 2.0 0.849 6.0 3501	3568 pers/h							
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec sec	26.95 32.6 45.9 45.9 2.1 30.6 24.9 LOS C	32.34 pers-h/h 32.6 sec 45.9 sec							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	16.7 118.6 0.15 2673 0.90 0.98 220.4	3207 pers/h 0.90 0.98 220.4							
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	3523.66 301.9 713.2 0.063 0.79 0.785	3523.66 \$/h							

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 0.0% 11.5% 0.0%

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Persons						
Demand Flows (Total)	veh/y	1,427,368	1,712,843 pers/y						
Delay (Total)	veh-h/y	12,937	15,525 pers-h/y						
Effective Stops (Total)	veh/y	1,282,957	1,539,548 pers/y						
Travel Distance (Total)	veh-km/y	1,458,169	1,749,802 pers-km/y						

Travel Time (Total) veh	-h/y 37,617	45,140 pers-h/y
Cost (Total)\$/yFuel Consumption (Total)L/yCarbon Dioxide (Total)kg/yHydrocarbons (Total)kg/yCarbon Monoxide (Total)kg/yNOx (Total)kg/y	1,691,354 144,935 342,336 30 378 377	1,691,354 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:00 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Boundary_Old Pitt Town_PM 2036 + Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site Practical Cycle Time)

Vehicle Movement Performance															
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI [Total	IOWS H\/ 1	FI TotaL	0WS H\/_1_	Satn	Delay	Service	Qu [Veh	eue Dist 1	Que	Stop Rate	No. of	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Tale		km/h
South	Bour	ndary Rd													
1	L2	All MCs	205	2.0	205	2.0	0.814	26.6	LOS C	16.7	118.6	0.99	0.97	1.16	38.3
		LV	201		201		0.814	26.6	LOS C	16.7	118.6	NA	NA	NA	38.3
		HV	4		4		0.814	26.6	LOS C	16.7	118.6	NA	NA	NA	38.3
2	T1	All MCs	700	2.0	700	2.0	*0.814	32.6	LOS C	16.7	118.6	0.99	0.97	1.17	39.8
		LV	686		686		*0.814	32.6	LOS C	16.7	118.6	NA	NA	NA	39.8
		HV	14		14		0.814	32.6	LOS C	16.7	118.6	NA	NA	NA	39.8
3	R2	All MCs	175	2.0	175	2.0	*0.806	43.9	LOS D	6.6	47.3	1.00	0.95	1.31	34.2
		LV	171		171		*0.806	43.9	LOS D	6.6	47.3	NA	NA	NA	34.2
		HV	3		3		0.806	43.9	LOS D	6.6	47.3	NA	NA	NA	34.2
Appro	ach		1080	2.0	1080	2.0	0.814	33.3	LOS C	16.7	118.6	0.99	0.97	1.19	38.5
Fast (Old P	itt Town R	2d												
4	12		219	20	219	20	0 795	32.7	1.05.0	11 7	83.4	1 00	0.95	1 19	36.6
-	22		215	2.0	215	2.0	0.700	32.7		11.7	83.4	NA	NA	NA	36.6
		HV	4		4		0.795	32.7		11.7	83.4	NA	NA	NA	36.6
5	Т1		353	2.0	353	20	* 0 795	37.0		11.7	83.4	1 00	0.95	1 22	37.0
5	• •		346	2.0	346	2.0	* 0.795	37.9		11.7	83.4	NA	0.33 NA	1.22 ΝΔ	37.9
		LV HV	7		040 7		0.795	37.9		11.7	83.4	NA	NA	NA	37.9
6	D 2		101	2.0	101	2.0	* 0.940	45.0		7.2	51.6	1.00	1.00	1 / 1	22.6
0	RΖ		104	2.0	104	2.0	* 0.049 * 0.840	45.9		7.2	51.0	NA	1.00 NA	1.41 NA	33.0
			101		101		0.049	45.9		7.2	51.6				33.6
Annro	ach	110	756	20	756	20	0.849	38.4		11.7	83.4	1 00	0.96	1 26	36.4
7.00	aon		100	2.0	100	2.0	0.010	00.1	200 2		00.1	1.00	0.00	1.20	00.1
North:	Bour	ndary Rd													
7	L2	All MCs	151	2.0	151	2.0	0.655	21.0	LOS C	11.3	80.7	0.93	0.82	0.93	40.9
		LV	148		148		0.655	21.0	LOS C	11.3	80.7	NA	NA	NA	40.9
		HV	3		3		0.655	21.0	LOS C	11.3	80.7	NA	NA	NA	40.9
8	T1	All MCs	575	2.0	575	2.0	0.655	26.7	LOS C	11.3	80.7	0.94	0.81	0.94	42.4
		LV	563		563		0.655	26.7	LOS C	11.3	80.7	NA	NA	NA	42.4
		ΗV	11		11		0.655	26.7	LOS C	11.3	80.7	NA	NA	NA	42.4
9	R2	All MCs	24	2.0	24	2.0	0.112	36.9	LOS D	0.8	5.5	0.93	0.70	0.93	36.6
		LV	24		24		0.112	36.9	LOS D	0.8	5.5	NA	NA	NA	36.6
		HV	0		0		0.112	36.9	LOS D	0.8	5.5	NA	NA	NA	36.6
Appro	ach		749	2.0	749	2.0	0.655	25.9	LOS C	11.3	80.7	0.93	0.81	0.94	41.9
West:	Old F	Pitt Town F	Rd												
10	L2	All MCs	29	2.0	29	2.0	0.441	24.2	LOS C	4.6	32.5	0.94	0.76	0.94	39.0
		LV	29		29	-	0.441	24.2	LOS C	4.6	32.5	NA	NA	NA	39.0
		ΗV	1		1		0.441	24.2	LOS C	4.6	32.5	NA	NA	NA	39.0
11	T1		252	20	252	20	0 441	30.9	108.0	46	32.5	0.95	0.76	0 95	40.2
	• •	LV	247	2.0	247	2.0	0.441	30.9	LOS C	4.6	32.5	NA	NA	NA	40.2
		HV	5		5		0.441	30.9	LOS C	4.6	32.5	NA	NA	NA	40.2
12	R2		107	20	107	20	0 4 9 5	30.0		37	26.1	0 08	0.78	0 08	35.8
14	112		107	∠.0	107	∠.0	0.490	39.0	LO3 D	3.1	20.1	0.90	0.70	0.90	55.6

	LV	105		105		0.495	39.0	LOS D	3.7	26.1	NA	NA	NA	35.8
	ΗV	2		2		0.495	39.0	LOS D	3.7	26.1	NA	NA	NA	35.8
Approach		388	2.0	388	2.0	0.495	32.6	LOS C	4.6	32.5	0.96	0.76	0.96	38.8
All Vehicles		2974	2.0	2974	2.0	0.849	32.6	LOS C	16.7	118.6	0.98	0.90	1.11	38.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:00 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Old Pitt Town_Valletta_AM_Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	53.9 1217.9 22.6 60.0 0.90 8.86 1.11	53.9 km/h 1461.5 pers-km/h 27.1 pers-h/h							
	l. //-	4004	4444							
Arrival Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	ven/n veh/h % % % veh/h	1201 1201 2.0 2.0 0.298 168.7 4033	1441 pers/n							
Control Dolay (Total)	voh h/h	1 50	1.90 porc h/h							
Control Delay (Iotal) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	Sec Sec Sec Sec Sec Sec Sec Sec	4.8 11.8 23.3 3.8 1.0 0.2 NA	4.8 sec 23.3 sec							
95% Back of Queue - Veh (Worst Lane)	veh	1.4								
95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	m veh/h	10.1 0.00 521 0.43 0.27 27.2	625 pers/h 0.43 0.27 27.2							
Cost (Total)	¢/b	10/6 31	1046 31 \$/b							
Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	L/h kg/h kg/h kg/h kg/h	98.1 231.9 0.019 0.27 0.249	1040.51 \$/H							

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 74.7% 29.4% 0.0%

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Persons						
Demand Flows (Total)	veh/y	576,505	691,806 pers/y						
Delay (Total)	veh-h/y	761	914 pers-h/y						

Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh-km/y veh-h/y	250,030 584,595 10,852	300,036 pers/y 701,514 pers-km/y 13,023 pers-h/y
Cost (Total)	\$/y	502,229	502,229 \$/y
Fuel Consumption (Total)	L/y	47,104	
Carbon Dioxide (Total)	kg/y	111,332	
Hydrocarbons (Total)	kg/y	9	
Carbon Monoxide (Total)	kg/y	130	
NOx (Total)	kg/y	120	
	•••		

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:01 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Old Pitt Town_Valletta_AM_Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance															
Mov ID	Turn	Mov Class	Dem Fl	nand lows	Ar Fl	rival lows	Deg. Satn	Aver. Delay	Level of Service	95% Qı	Back Of Jeue	Prop. Que	Eff. Stop Poto	Aver. No. of	Aver. Speed
			veh/h	⊓vj %	veh/h	⊓vj %	v/c	sec		veh	m m		Nale	Cycles	km/h
East: Old Pitt Town Rd															
5	T1	All MCs	131	2.0	131	2.0	0.068	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
		LV	128		128		0.068	0.0	LOS A	0.0	0.0	NA	NA	NA	60.0
		ΗV	3		3		0.068	0.0	LOS A	0.0	0.0	NA	NA	NA	60.0
6	R2	All MCs	311	2.0	311	2.0	0.240	6.9	LOS A	1.2	8.4	0.46	0.65	0.46	51.4
		LV	304		304		0.240	6.9	LOS A	1.2	8.4	NA	NA	NA	51.4
		HV	6		6		0.240	8.9	LOS A	1.2	8.4	NA	NA	NA	50.0
Appro	ach		441	2.0	441	2.0	0.240	4.9	NA	1.2	8.4	0.32	0.46	0.32	53.7
North:	Valle	tta Dr													
7	L2	All MCs	381	2.0	381	2.0	0.298	6.7	LOS A	1.4	10.1	0.40	0.62	0.40	51.6
		LV	373		373		0.298	6.7	LOS A	1.4	10.1	NA	NA	NA	51.6
		ΗV	8		8		0.298	8.2	LOS A	1.4	10.1	NA	NA	NA	50.5
9	R2	All MCs	49	2.0	49	2.0	0.107	11.8	LOS B	0.4	2.7	0.63	0.85	0.63	48.2
		LV	48		48		0.107	11.6	LOS B	0.4	2.7	NA	NA	NA	48.3
		ΗV	1		1		0.107	23.3	LOS C	0.4	2.7	NA	NA	NA	41.8
Appro	ach		431	2.0	431	2.0	0.298	7.3	LOS A	1.4	10.1	0.43	0.64	0.43	51.2
West:	Old F	Pitt Town F	Rd												
10	L2	All MCs	72	2.0	72	2.0	0.173	5.6	LOS A	0.0	0.0	0.00	0.13	0.00	56.3
		LV	70		70		0.173	5.6	LOS A	0.0	0.0	NA	NA	NA	56.3
		ΗV	1		1		0.173	5.6	LOS A	0.0	0.0	NA	NA	NA	56.3
11	T1	All MCs	258	2.0	258	2.0	0.173	0.0	LOS A	0.0	0.0	0.00	0.13	0.00	58.8
		LV	253		253		0.173	0.0	LOS A	0.0	0.0	NA	NA	NA	58.8
		ΗV	5		5		0.173	0.0	LOS A	0.0	0.0	NA	NA	NA	58.8
Appro	ach		329	2.0	329	2.0	0.173	1.3	NA	0.0	0.0	0.00	0.13	0.00	58.2
All Vel	nicles		1201	2.0	1201	2.0	0.298	4.8	NA	1.4	10.1	0.27	0.43	0.27	53.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:01 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Old Pitt Town_Valletta_PM_Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Performance Measure Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity	Vehicles: km/h veh-km/h veh-h/h km/h veh/h % % %	All MCs 56.0 753.3 13.4 60.0 0.93 9.27 1.07 743 743 2.0 2.0 0.131 646.7	Persons 56.0 km/h 904.0 pers-km/h 16.1 pers-h/h 892 pers/h							
Effective Intersection Capacity	veh/h	5663								
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	0.58 2.8 9.6 16.3 2.4 0.4 0.1 NA	0.70 pers-h/h 2.8 sec 16.3 sec							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	0.4 3.2 0.00 191 0.26 0.12 15.0	230 pers/h 0.26 0.12 15.0							
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	614.21 55.5 131.1 0.010 0.16 0.132	614.21 \$/h							

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 68.0% 18.5% 0.0%

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Persons						
Demand Flows (Total)	veh/y	356,716	428,059 pers/y						
Delay (Total)	veh-h/y	279	335 pers-h/y						

Effective Stops (Total)	veh/y	91,868	110,242 pers/y	
Travel Distance (Total)	veh-km/y	361,585	433,902 pers-km/y	
Travel Time (Total)	veh-h/y	6,451	7,741 pers-h/y	
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	294,820 26,617 62,931 5 75 63	294,820 \$/y	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:02 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Old Pitt Town_Valletta_PM_Existing (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Give-Way (Two-Way)

Vehic	Vehicle Movement Performance														
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
UI U		Class	FI [Total	IOWS HV/1	FI [Total]	ows HV 1	Satn	Delay	Service	Qu [Veh	ieue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East: 0	Old P	itt Town F	ld												
5	T1	All MCs	253	2.0	253	2.0	0.131	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
		LV	248		248		0.131	0.0	LOS A	0.0	0.0	NA	NA	NA	59.9
		ΗV	5		5		0.131	0.0	LOS A	0.0	0.0	NA	NA	NA	59.9
6	R2	All MCs	144	2.0	144	2.0	0.097	6.2	LOS A	0.4	3.2	0.31	0.57	0.31	51.8
		LV	141		141		0.097	6.2	LOS A	0.4	3.2	NA	NA	NA	51.8
		HV	3		3		0.097	7.0	LOS A	0.4	3.2	NA	NA	NA	51.2
Approa	ach		397	2.0	397	2.0	0.131	2.3	NA	0.4	3.2	0.11	0.21	0.11	56.7
North: Valletta Dr															
7	12	All MCs	129	2.0	129	2.0	0.092	6.1	LOSA	0.4	2.7	0.26	0.56	0.26	52.0
-		IV	127		127		0.092	6.1	LOSA	0.4	2.7	NA	NA	NA	52.0
		HV	3		3		0.092	6.8	LOSA	0.4	2.7	NA	NA	NA	51.5
9	R2	All MCs	24	2.0	24	2.0	0.041	9.6	LOS A	0.1	1.1	0.54	0.74	0.54	49.6
		LV	24		24		0.041	9.4	LOS A	0.1	1.1	NA	NA	NA	49.7
		ΗV	0		0		0.041	16.3	LOS C	0.1	1.1	NA	NA	NA	45.5
Approa	ach		154	2.0	154	2.0	0.092	6.6	LOS A	0.4	2.7	0.31	0.59	0.31	51.6
West:	Old F	Pitt Town F	٦d												
10	12	All MCs	31	20	31	20	0 101	5.6	LOSA	0.0	0.0	0.00	0.09	0.00	56.6
10	22		30	2.0	30	2.0	0.101	5.6	LOSA	0.0	0.0	NA	NA	NA	56.6
		HV	1		1		0.101	5.6	LOSA	0.0	0.0	NA	NA	NA	56.6
11	Т1		162	20	162	20	0 101	0.0		0.0	0.0	0.00	0.00	0.00	50 1
11			150	2.0	150	2.0	0.101	0.0		0.0	0.0	0.00 NA	0.03 NA	0.00 NA	59.1
		HV	3		3		0.101	0.0	LOSA	0.0	0.0	NA	NA	NA	59.1
Approa	ach		193	2.0	193	2.0	0.101	0.9	NA	0.0	0.0	0.00	0.09	0.00	58.7
								0.0		0.0	0.0	0.00	0.00	0.00	
All Veh	nicles		743	2.0	743	2.0	0.131	2.8	NA	0.4	3.2	0.12	0.26	0.12	56.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:02 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_AM_2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum Delay)

Intersection Performance - Hourly Values									
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons					
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	32.2 3873.6 120.4 60.0 0.54 4.84 1.87	3.8 km/h 42.1 ped-km/h 11.0 ped-h/h	30.2 km/h 4690.4 pers-km/h 155.5 pers-h/h					
Domand Flows (Total)	vob/b	2705	Oll nod/h	1761 para/b					
Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h % % % veh/h	3795 3795 2.0 2.0 1.028 -12.5 3691	0.058	4704 pers/ii					
Control Delay (Total)	veh_h/h	57.06	2.01 ned-h/h	70.47 pers-h/h					
Control Delay (Norst Lane by MC) Control Delay (Worst Lane by MC)	sec sec	54.1 97.1 97.1	34.3 sec	53.3 sec					
Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average)	sec sec sec	1.8 52.3 42.7							
Intersection Level of Service (LOS)		LOS D	LOS D						
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total)	veh m veh/h	40.8 290.3 0.36 4115	195 ped/h	5134 pers/h					
Effective Stop Rate Proportion Queued Performance Index		1.08 0.91 318.0	0.93 0.93 12.1	1.08 0.91 330.1					
Cost (Total)	\$/h	5281.99	316.88 \$/h	5598.87 \$/h					
Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	L/h kg/h kg/h kg/h kg/h	414.7 979.2 0.090 1.05 1.035	2.000 ¢						

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 74.2% 6.2% 0.0%

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons					
Demand Flows (Total) Delay (Total)	veh/y veh-h/y	1,821,474 27,387	101,053 ped/y 963 ped-h/y	2,286,821 pers/y 33,828 pers-h/y					

Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh-km/y veh-h/y	1,975,436 1,859,332 57,810	93,679 ped/y 20,211 ped-km/y 5,281 ped-h/y	2,464,202 pers/y 2,251,409 pers-km/y 74,654 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	2,535,354 199,046 470,009 43 505 497	152,102 \$/y	2,687,455 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:03 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

12	R2	All MCs	87	0.0	87	0.0	0.248	21.4	LOS C	1.9	13.1	0.79	0.73	0.79	44.1
		LV	87		87		0.248	21.4	LOS C	1.9	13.1	NA	NA	NA	44.1
		HV	0		0		-	-	-	-	-	NA	NA	NA	-
Appro	ach		1095	1.8	1095	1.8	1.028	82.2	LOS F	31.6	225.1	0.97	1.39	1.77	25.7
All Vel	hicles		3795	2.0	3795	2.0	1.028	54.1	LOS D	40.8	290.3	0.91	1.08	1.32	32.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of <i>i</i> Service	AVERAGE QUE [Ped	BACK OF UE Dist]	Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed
o	ped/h	ped/h	sec	_	ped	m	_	_	sec	m	m/sec
South: Mount	Carmel L	Dr									
P1 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
East: Old Pitt	Fown Rd										
P2 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
North: Valletta	Dr										
P3 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
West: Old Pitt	Town Rd	l									
P4 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
All Pedestrians	50	211	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:03 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_PM_2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum Delay)

Intersection Performance - Hourly Values									
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons					
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	41.6 3903.4 93.8 60.0 0.69 6.60 1.44	3.8 km/h 42.1 ped-km/h 11.0 ped-h/h	38.3 km/h 4726.2 pers-km/h 123.5 pers-h/h					
			0.4.4	1700 "					
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	3823 3823 2.0 2.0 0.831 8.4 4603	211 ped/h 0.058	4798 pers/h					
			0.04						
Control Delay (Iotal) Control Delay (Average) Control Delay (Worst Lane by MC)	veh-h/h sec sec	28.86 27.2 48.2	2.01 ped-h/h 34.3 sec	36.64 pers-h/h 27.5 sec					
Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average)	sec sec sec sec	48.2 1.3 25.8 20.2	34.3 sec	48.2 sec					
Intersection Level of Service (LOS)		LOS C	LOS D						
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total)	veh m veh/h	23.0 163.6 0.20 3252	195 ped/h	4098 pers/h					
Proportion Queued Performance Index		0.85 0.91 242.9	0.93 0.93 12.1	0.85 0.91 255.0					
Cost (Total)	\$/b	4254.06	316 88 \$/h	4570.94 \$/h					
Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	L/h kg/h kg/h kg/h kg/h	375.2 886.2 0.078 0.99 0.964	010.00 ¢/m						
· · /	-								

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 0.0% 20.5% 0.0%

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons					
Demand Flows (Total) Delay (Total)	veh/y veh-h/y	1,835,116 13,852	101,053 ped/y 963 ped-h/y	2,303,192 pers/y 17,585 pers-h/y					

Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh-km/y veh-h/y	1,561,070 1,873,621 45,015	93,679 ped/y 20,211 ped-km/y 5,281 ped-h/y	1,966,963 pers/y 2,268,556 pers-km/y 59,299 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	2,041,948 180,090 425,364 37 475 463	152,102 \$/y	2,194,049 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:04 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9
Site: 101v [Old Pitt Town_Valletta_PM_2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehic	le M	ovemen	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI Total	IOWS HV 1	FI [Total	lows HV/1	Satn	Delay	Service	Qu [Veh	eue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		- Tato		km/h
South	Mou	nt Carme	l Dr												
1	L2	All MCs	87	2.0	87	2.0	0.298	24.1	LOS C	4.9	35.1	0.81	0.72	0.81	40.6
		LV	86		86		0.298	24.1	LOS C	4.9	35.1	NA	NA	NA	40.6
		ΗV	2		2		0.298	24.1	LOS C	4.9	35.1	NA	NA	NA	40.6
2	T1	All MCs	225	2.0	225	2.0	0.298	26.9	LOS C	4.9	35.1	0.83	0.70	0.83	42.1
		LV	221		221		0.298	26.9	LOS C	4.9	35.1	NA	NA	NA	42.1
		ΗV	5		5		0.298	26.9	LOS C	4.9	35.1	NA	NA	NA	42.1
3	R2	All MCs	87	2.0	87	2.0	0.667	48.2	LOS D	3.7	26.2	1.00	0.84	1.16	32.8
		LV	86		86		0.667	48.2	LOS D	3.7	26.2	NA	NA	NA	32.8
		ΗV	2		2		0.667	48.2	LOS D	3.7	26.2	NA	NA	NA	32.8
Appro	ach		400	2.0	400	2.0	0.667	31.0	LOS C	4.9	35.1	0.86	0.73	0.90	39.4
East: (Old P	itt Town F	Rd												
4	12	All MCs	87	2.0	87	20	0 740	26.6	1.0S.C	20.5	146.3	0.89	0.82	0.91	42.9
		IV	86	2.0	86	2.0	0.740	26.6		20.5	146.3	NA	NA	NA	42.9
		HV	2		2		0.740	26.6	LOS C	20.5	146.3	NA	NA	NA	42.9
5	T1	All MCs	1155	2.0	1155	2.0	0.740	20.8	LOSIC	20.7	147.2	0.89	0.81	0.91	44.6
	• •	LV	1132		1132		0.740	20.8	LOS C	20.7	147.2	NA	NA	NA	44.6
		ΗV	23		23		0.740	20.8	LOS C	20.7	147.2	NA	NA	NA	44.6
6	R2	All MCs	219	2.0	219	2.0	*0.564	21.2	LOS C	4.2	30.0	0.94	0.81	0.94	43.2
		LV	215		215		* 0.564	21.2	LOS C	4.2	30.0	NA	NA	NA	43.2
		ΗV	4		4		0.564	21.2	LOS C	4.2	30.0	NA	NA	NA	43.2
Appro	ach		1461	2.0	1461	2.0	0.740	21.2	LOS C	20.7	147.2	0.90	0.81	0.91	44.3
North	Valla	tto Dr													
	valle		400	• •	400	0.0	0.054	00.0	100.0	4.0	04.0	0.00	0.75	0.00	40.0
1	L2		189	2.0	189	2.0	0.251	22.2	LOSC	4.9	34.6	0.69	0.75	0.69	42.6
			180		180		0.251	22.2		4.9	34.6				42.6
	T 4		4	0.0	4	~ ~	0.201	22.2	103.0	4.9	34.0				42.0
8	11		379	2.0	379	2.0	* 0.750	31.9		14.5	103.3	0.98	0.89	1.06	39.6
			3/1		3/1		* 0.750	31.9		14.5	103.3				39.0
	D 0		0	0.0	0	~ ~	0.750	31.9		14.5	103.3		0.70		39.0
9	R2	All MCs	/1	2.0	/1	2.0	0.276	36.1	LOS D	2.4	17.4	0.89	0.76	0.89	36.8
			69		69		0.276	36.1		2.4	17.4	NA	NA	NA	36.8
Appro	oob	HV	620	2.0	620	2.0	0.276	30.1		2.4	17.4			0.02	30.8
Appro	acri		039	2.0	039	2.0	0.750	29.5	LU3 C	14.5	103.5	0.00	0.65	0.93	40.1
West:	Old F	Pitt Town I	Rd												
10	L2	All MCs	96	2.0	96	2.0	0.144	26.0	LOS C	2.5	17.9	0.71	0.73	0.71	41.7
		LV	94		94		0.144	26.0	LOS C	2.5	17.9	NA	NA	NA	41.7
		ΗV	2		2		0.144	26.0	LOS C	2.5	17.9	NA	NA	NA	41.7
11	T1	All MCs	1143	2.0	1143	2.0	*0.831	32.5	LOS C	23.0	163.6	0.98	0.97	1.12	40.1
		LV	1120		1120		*0.831	32.5	LOS C	23.0	163.6	NA	NA	NA	40.1
		ΗV	23		23		0.831	32.5	LOS C	23.0	163.6	NA	NA	NA	40.1

12	R2	All MCs	84	0.0	84	0.0	0.306	24.0	LOS C	1.5	10.8	0.85	0.75	0.85	43.9
		LV	84		84		0.306	24.0	LOS C	1.5	10.8	NA	NA	NA	43.9
		HV	0		0		-	-	-	-	-	NA	NA	NA	-
Appro	ach		1323	1.9	1323	1.9	0.831	31.5	LOS C	23.0	163.6	0.95	0.93	1.07	40.4
All Vel	nicles		3823	2.0	3823	2.0	0.831	27.2	LOS C	23.0	163.6	0.91	0.85	0.97	41.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian M	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of <i>i</i> Service	AVERAGE QUE [Ped	BACK OF UE Dist]	Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed	
	ped/n	ped/h	sec	_	ped	m	_	_	sec	m	m/sec	
South: Mount	Carmel L)r										
P1 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
East: Old Pitt	ſown Rd											
P2 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
North: Valletta	Dr											
P3 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
West: Old Pitt	Town Rd											
P4 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
All Pedestrians	50	211	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:04 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_AM_2036 + Slip (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum Delay)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons						
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	33.4 3876.5 116.1 60.0 0.56 5.07 1.80	3.8 km/h 42.1 ped-km/h 11.0 ped-h/h	31.2 km/h 4693.9 pers-km/h 150.3 pers-h/h						
Demand Flows (Total)	veh/h	3795	211 ned/h	4764 pers/h						
Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h % % % veh/h	3795 2.0 2.0 1.053 -14.6 3602	0.058	4704 persin						
Control Delay (Total)	veh-h/h	52.53	2.01 ped-h/h	65.04 pers-h/h						
Control Delay (Average) Control Delay (Worst Lane by MC)	sec	49.8 115.9	34.3 sec	49.1 sec						
Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average)	sec sec sec sec	115.9 1.8 48.0 38.9	34.3 sec	115.9 sec						
Intersection Level of Service (LOS)		LOS D	LOS D							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane)	veh m	44.1 314.2 0.39								
Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh/h	4017 1.06 0.92 308.4	195 ped/h 0.93 0.93 12.1	5015 pers/h 1.05 0.92 320.4						
	• //	5440.40	040.00 ##	F 400 00 All						
Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	_{\$} /n L/h kg/h kg/h kg/h kg/h	5116.19 408.8 965.3 0.088 1.04 1.026	310.88 \$/N	54 <i>33</i> .06 \$/N						

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 5.6 %

Number of Iterations: 5 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 7.2% 9.6% 0.0%

Intersection Performance - Annual Va	lues			
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Demand Flows (Total)	veh/y	1,821,474	101,053 ped/y	2,286,821 pers/y
Delay (Total)	veh-h/y	25,214	963 ped-h/y	31,219 pers-h/y

Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh-km/y veh-h/y	1,927,939 1,860,709 55,728	93,679 ped/y 20,211 ped-km/y 5,281 ped-h/y	2,407,206 pers/y 2,253,061 pers-km/y 72,155 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	2,455,769 196,219 463,350 42 500 492	152,102 \$/y	2,607,870 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:05 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_AM_2036 + Slip (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehic	le M	ovemen	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H Intel]	lows H\/1	H Total	lows H\/1	Satn	Delay	Service	QL [\/eh	Ieue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Tato	Cycles	km/h
South	: Mou	nt Carme	l Dr												
1	L2	All MCs	87	2.0	87	2.0	0.344	20.0	LOS C	6.4	45.9	0.78	0.71	0.78	42.2
		LV	86		86		0.344	20.0	LOS C	6.4	45.9	NA	NA	NA	42.2
		ΗV	2		2		0.344	20.0	LOS C	6.4	45.9	NA	NA	NA	42.2
2	T1	All MCs	349	2.0	349	2.0	0.344	23.3	LOS C	6.5	45.9	0.80	0.68	0.80	43.9
		LV	342		342		0.344	23.3	LOS C	6.5	45.9	NA	NA	NA	43.9
		ΗV	7		7		0.344	23.3	LOS C	6.5	45.9	NA	NA	NA	43.9
3	R2	All MCs	87	2.0	87	2.0	0.889	55.6	LOS E	4.0	28.3	1.00	0.96	1.59	30.8
		LV	86		86		0.889	55.6	LOS E	4.0	28.3	NA	NA	NA	30.8
		ΗV	2		2		0.889	55.6	LOS E	4.0	28.3	NA	NA	NA	30.8
Appro	ach		524	2.0	524	2.0	0.889	28.2	LOS C	6.5	45.9	0.83	0.73	0.93	40.7
East:	Old P	itt Town F	Rd												
4	L2	All MCs	87	2.0	87	2.0	0.546	27.8	LOS C	11.8	84.0	0.85	0.75	0.85	42.1
		LV	86		86		0.546	27.8	LOS C	11.8	84.0	NA	NA	NA	42.1
		ΗV	2		2		0.546	27.8	LOS C	11.8	84.0	NA	NA	NA	42.1
5	T1	All MCs	671	2.0	671	2.0	0.546	22.0	LOS C	11.9	85.0	0.85	0.74	0.85	43.8
		LV	657		657		0.546	22.0	LOS C	11.9	85.0	NA	NA	NA	43.8
		ΗV	13		13		0.546	22.0	LOS C	11.9	85.0	NA	NA	NA	43.8
6	R2	All MCs	408	2.0	408	2.0	*0.879	37.1	LOS D	14.5	103.5	1.00	0.99	1.30	36.4
		LV	400		400		*0.879	37.1	LOS D	14.5	103.5	NA	NA	NA	36.4
		ΗV	8		8		0.879	37.1	LOS D	14.5	103.5	NA	NA	NA	36.4
Appro	ach		1166	2.0	1166	2.0	0.879	27.7	LOS C	14.5	103.5	0.90	0.83	1.01	40.8
North	\/alle	tta Dr													
7			20.9	2.0	200	2.0	0 510	10.0		F 7	40.2	0.94	0.79	0.94	45.0
1	LZ		290	2.0	290	2.0	0.512	10.2		5.7 5.7	40.2	0.04	0.70	U.04	45.0
			292		292		0.512	10.2		5.7 5.7	40.2				45.0
	T 4		505	0.0	505	0.0	0.512	10.2		J.7	40.2	1.00	1.00	0.00	45.0
8	11		595	2.0	595	2.0	* 1.053	115.9	LOSF	44.1	314.2	1.00	1.66	2.06	22.0
			583		583		* 1.053	115.9	LOSF	44.1	314.2	NA	NA	NA	22.0
	-		12	~ ~	12	• •	1.055	115.9	LUSF	44.1	314.2	INA	NA	NA 0.00	22.0
9	R2	All MCs	117	2.0	117	2.0	0.429	44.2	LOS D	4.1	28.9	0.89	0.79	0.89	37.3
			115		115		0.429	44.2		4.1	28.9	NA	NA	NA	37.3
Annro	ach	ΗV	1000	2.0	1000	20	0.429	78.8		4.1	28.9		1 30	1 56	37.3 27.4
Арріо	acri		1003	2.0	1003	2.0	1.000	70.0	LUG L	44.1	514.2	0.34	1.50	1.50	27.4
West:	Old F	Pitt Town I	Rd												
10	L2	All MCs	67	2.0	67	2.0	0.076	12.2	LOS B	1.0	7.2	0.52	0.67	0.52	48.5
		LV	66		66		0.076	12.2	LOS B	1.0	7.2	NA	NA	NA	48.5
		ΗV	1		1		0.076	12.2	LOS B	1.0	7.2	NA	NA	NA	48.5
11	T1	All MCs	940	2.0	940	2.0	*0.977	63.8	LOS E	27.0	192.0	1.00	1.32	1.64	29.4
		LV	921		921		*0.977	63.8	LOS E	27.0	192.0	NA	NA	NA	29.4
		HV	19		19		0.977	63.8	LOS E	27.0	192.0	NA	NA	NA	29.4

12	R2	All MCs	87	0.0	87	0.0	0.241	19.1	LOS B	1.8	12.8	0.78	0.73	0.78	44.4
		LV	87		87		0.241	19.1	LOS B	1.8	12.8	NA	NA	NA	44.4
		HV	0		0		-	-	-	-	-	NA	NA	NA	-
Appro	ach		1095	1.8	1095	1.8	0.977	57.1	LOS E	27.0	192.0	0.95	1.23	1.50	31.0
All Vel	nicles		3795	2.0	3795	2.0	1.053	49.8	LOS D	44.1	314.2	0.92	1.06	1.29	33.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian M	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of <i>i</i> Service	AVERAGE QUE [Ped	BACK OF UE Dist]	Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed	
	ped/n	ped/h	sec	_	ped	m	_	_	sec	m	m/sec	
South: Mount	Carmel L)r										
P1 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
East: Old Pitt	ſown Rd											
P2 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
North: Valletta	Dr											
P3 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
West: Old Pitt	Town Rd											
P4 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
All Pedestrians	50	211	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:05 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_PM_2036 + Slip (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum Delay)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons						
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	41.9 3904.9 93.3 60.0 0.70 6.64 1.43	3.8 km/h 42.1 ped-km/h 11.0 ped-h/h	38.5 km/h 4727.9 pers-km/h 122.9 pers-h/h						
	1.4	0000	0.44	1700 //						
Arrival Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	ven/n veh/h % % veh/h	3823 3823 2.0 2.0 0.831 8.4 4603	0.058	4798 pers/n						
		00.04	0.04	00.00 l. //						
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC)	veh-h/h sec sec	28.34 26.7 47.5	2.01 ped-h/h 34.3 sec	36.02 pers-h/h 27.0 sec						
Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average)	sec sec sec sec	47.5 1.3 25.3 19.7	34.3 sec	47.5 sec						
Intersection Level of Service (LOS)		LOS C	LOS D							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane)	veh m	23.0 163.6 0.20								
Effective Stops (lotal) Effective Stop Rate Proportion Queued Performance Index	veh/h	3241 0.85 0.90 240.3	195 ped/h 0.93 0.93 12.1	4084 pers/h 0.85 0.91 252.4						
	* "	100100	o (o o o o o in							
Cost (Iotal) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	4234.62 374.5 884.6 0.077 0.99 0.963	316.88 \$/h	4551.50 \$/h						

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 0.0% 20.5% 0.0%

Intersection Performance - Annual Va	lues			
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Demand Flows (Total)	veh/y	1,835,116	101,053 ped/y	2,303,192 pers/y
Delay (Total)	veh-h/y	13,605	963 ped-h/y	17,289 pers-h/y

Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh-km/y veh-h/y	1,555,651 1,874,335 44,769	93,679 ped/y 20,211 ped-km/y 5,281 ped-h/y	1,960,461 pers/y 2,269,413 pers-km/y 59,005 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	2,032,619 179,773 424,619 37 474 462	152,102 \$/y	2,184,720 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:06 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_PM_2036 + Slip (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehic	le M	ovemen	t Perfo	rma	nce										
Mov	Turn	Mov	Den	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H Intel T	lows H\/1	H Total	lows H\/1	Satn	Delay	Service	QL [\/eh	Ieue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Tato	Cycles	km/h
South	Mou	nt Carme	l Dr												
1	L2	All MCs	87	2.0	87	2.0	0.298	24.1	LOS C	4.9	35.1	0.81	0.72	0.81	40.6
		LV	86		86		0.298	24.1	LOS C	4.9	35.1	NA	NA	NA	40.6
		HV	2		2		0.298	24.1	LOS C	4.9	35.1	NA	NA	NA	40.6
2	T1	All MCs	225	2.0	225	2.0	0.298	26.9	LOS C	4.9	35.1	0.83	0.70	0.83	42.1
		LV	221		221		0.298	26.9	LOS C	4.9	35.1	NA	NA	NA	42.1
		ΗV	5		5		0.298	26.9	LOS C	4.9	35.1	NA	NA	NA	42.1
3	R2	All MCs	87	2.0	87	2.0	0.630	47.5	LOS D	3.6	25.8	1.00	0.82	1.11	33.0
		LV	86		86		0.630	47.5	LOS D	3.6	25.8	NA	NA	NA	33.0
		ΗV	2		2		0.630	47.5	LOS D	3.6	25.8	NA	NA	NA	33.0
Appro	ach		400	2.0	400	2.0	0.630	30.8	LOS C	4.9	35.1	0.86	0.73	0.89	39.4
Fast: (Old P	itt Town F	2d												
4	12		87	2.0	87	2.0	0 740	26.6	1.05.0	20.5	146 3	0.80	0.82	0.91	42.9
7	LZ		86	2.0	86	2.0	0.740	26.6		20.5	146.3	NA	0.02 NA	NA	42.0
		HV	2		2		0.740	26.6	105 C	20.5	146.3	NA	NA	NA	42.9
5	Т1		1155	20	1155	20	0.740	20.8		20.7	1/7 2	0.80	0.81	0.01	11.6
5			1132	2.0	1132	2.0	0.740	20.0		20.7	147.2	0.03 NA	NA	NA	44.6
		HV	23		23		0.740	20.8	LOS C	20.7	147.2	NA	NA	NA	44.6
6	R 2		210	20	210	20	* 0 564	21.2	1.05.0	12	30.0	0.04	0.81	0.04	13.2
0	ΠZ		219	2.0	219	2.0	* 0.504	21.2		4.2	30.0	0.94 ΝΔ	0.01 NA	0.94 NA	43.2
		LV HV	215		215		0.564	21.2		4.2	30.0	NA	NA	NA	43.2
Annro	ach	110	1461	20	1461	20	0.740	21.2	1.05 C	20.7	147.2	0.90	0.81	0.91	44.3
North:	Valle	tta Dr													
7	L2	All MCs	189	2.0	189	2.0	0.213	12.7	LOS B	3.2	22.9	0.56	0.70	0.56	48.2
		LV	186		186		0.213	12.7	LOS B	3.2	22.9	NA	NA	NA	48.2
		HV	4		4		0.213	12.7	LOS B	3.2	22.9	NA	NA	NA	48.2
8	T1	All MCs	379	2.0	379	2.0	*0.750	31.9	LOS C	14.5	103.3	0.98	0.89	1.06	39.6
		LV	371		371		*0.750	31.9	LOS C	14.5	103.3	NA	NA	NA	39.6
		ΗV	8		8		0.750	31.9	LOS C	14.5	103.3	NA	NA	NA	39.6
9	R2	All MCs	71	2.0	71	2.0	0.276	36.1	LOS D	2.4	17.4	0.89	0.76	0.89	36.8
		LV	69		69		0.276	36.1	LOS D	2.4	17.4	NA	NA	NA	36.8
		HV	1		1		0.276	36.1	LOS D	2.4	17.4	NA	NA	NA	36.8
Appro	ach		639	2.0	639	2.0	0.750	26.7	LOS C	14.5	103.3	0.84	0.82	0.89	41.4
West:	Old F	Pitt Town I	Rd												
10	L2	All MCs	96	2.0	96	2.0	0.144	26.0	LOS C	2.5	17.9	0.71	0.73	0.71	41.7
		LV	94		94		0.144	26.0	LOS C	2.5	17.9	NA	NA	NA	41.7
		ΗV	2		2		0.144	26.0	LOS C	2.5	17.9	NA	NA	NA	41.7
11	T1	All MCs	1143	2.0	1143	2.0	*0.831	32.5	LOS C	23.0	163.6	0.98	0.97	1.12	40.1
		LV	1120		1120		*0.831	32.5	LOS C	23.0	163.6	NA	NA	NA	40.1
		ΗV	23		23		0.831	32.5	LOS C	23.0	163.6	NA	NA	NA	40.1

12	R2	All MCs	84	0.0	84	0.0	0.306	24.0	LOS C	1.5	10.8	0.85	0.75	0.85	43.9
		LV	84		84		0.306	24.0	LOS C	1.5	10.8	NA	NA	NA	43.9
		HV	0		0		-	-	-	-	-	NA	NA	NA	-
Appro	ach		1323	1.9	1323	1.9	0.831	31.5	LOS C	23.0	163.6	0.95	0.93	1.07	40.4
All Vel	nicles		3823	2.0	3823	2.0	0.831	26.7	LOS C	23.0	163.6	0.90	0.85	0.96	41.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian M	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of <i>i</i> Service	AVERAGE QUE [Ped	BACK OF UE Dist]	Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed	
	ped/n Correct F	ped/h	sec	_	ped	m	_	_	sec	m	m/sec	
South: Mount	Jarmer L)r										
P1 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
East: Old Pitt	ſown Rd											
P2 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
North: Valletta	Dr											
P3 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
West: Old Pitt	Town Rd											
P4 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
All Pedestrians	50	211	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:06 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_AM_2036 +Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum Delay)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons						
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	23.1 4374.9 189.7 60.0 0.38 3.16 2.60	3.7 km/h 42.1 ped-km/h 11.3 ped-h/h	22.2 km/h 5292.0 pers-km/h 238.9 pers-h/h						
Domand Flows (Total)	veb/b	4096	011 nod/h	F2F4 para/b						
Arrival Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h % % % veh/h	4286 4286 1.9 1.9 1.202 -25.1 3566	0.066	5354 pers/n						
Control Dolay (Total)	veh h/h	110.76	2.30 pod b/b	146.01 pors b/b						
Control Delay (Notar) Control Delay (Average) Control Delay (Worst Lane by MC)	sec sec	100.6 223.0	39.3 sec	98.2 sec						
Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average)	sec sec sec sec	223.0 2.0 98.6 85.5	39.3 Sec	223.0 sec						
Intersection Level of Service (LOS)		LOS F	LOS D							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane)	veh m	70.1 498.9 0.61								
Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh/h	5515 1.29 0.90 501.4	197 ped/h 0.94 0.94 12.4	6815 pers/h 1.27 0.91 513.7						
Cost (Iotal) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	8022.74 543.6 1283.0 0.125 1.31 1.269	325.28 \$/h	8348.01 \$/h						

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 17.5 %

Number of Iterations: 7 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 8.1% 50.6% 5.4%

Intersection Performance - Annual Va	lues			
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Demand Flows (Total)	veh/y	2,057,432	101,053 ped/y	2,569,971 pers/y
Delay (Total)	veh-h/y	57,483	1,103 ped-h/y	70,082 pers-h/y

Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh-km/y veh-h/y	2,647,065 2,099,970 91,043	94,523 ped/y 20,211 ped-km/y 5,421 ped-h/y	3,271,002 pers/y 2,540,174 pers-km/y 114,673 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	3,850,914 260,910 615,840 60 631 609	156,132 \$/y	4,007,046 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:08 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_AM_2036 +Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehic	le M	ovemen	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H Total	lows H\/ 1	FI [Total	lows H\/ 1	Satn	Delay	Service	Qu [\/eh	leue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		- Tato	0,000	km/h
South	Mou	nt Carme	l Dr												
1	L2	All MCs	87	2.0	87	2.0	0.281	16.2	LOS B	6.4	45.6	0.67	0.64	0.67	44.2
		LV	86		86		0.281	16.2	LOS B	6.4	45.6	NA	NA	NA	44.2
		ΗV	2		2		0.281	16.2	LOS B	6.4	45.6	NA	NA	NA	44.2
2	T1	All MCs	372	2.0	372	2.0	0.281	19.3	LOS B	6.5	46.6	0.69	0.61	0.69	46.0
		LV	364		364		0.281	19.3	LOS B	6.5	46.6	NA	NA	NA	46.0
		ΗV	7		7		0.281	19.3	LOS B	6.5	46.6	NA	NA	NA	46.0
3	R2	All MCs	87	2.0	87	2.0	1.000	82.2	LOS F	5.3	37.7	1.00	1.09	1.98	25.2
		LV	86		86		1.000	82.2	LOS F	5.3	37.7	NA	NA	NA	25.2
		HV	2		2		1.000	82.2	LOS F	5.3	37.7	NA	NA	NA	25.2
Appro	ach		546	2.0	546	2.0	1.000	28.9	LOS C	6.5	46.6	0.74	0.69	0.89	40.4
East: (Old P	itt Town F	Rd												
4	L2	All MCs	87	2.0	87	2.0	0.713	38.9	LOS D	15.4	109.6	0.96	0.85	0.99	37.5
		LV	86		86		0.713	38.9	LOS D	15.4	109.6	NA	NA	NA	37.5
		ΗV	2		2		0.713	38.9	LOS D	15.4	109.6	NA	NA	NA	37.5
5	T1	All MCs	671	2.0	671	2.0	0.713	32.7	LOS C	15.6	110.8	0.96	0.85	0.99	38.9
		LV	657		657		0.713	32.7	LOS C	15.6	110.8	NA	NA	NA	38.9
		HV	13		13		0.713	32.7	LOS C	15.6	110.8	NA	NA	NA	38.9
6	R2	All MCs	447	2.0	447	2.0	* 1.202	223.0	LOS F	46.2	329.1	1.00	1.72	2.91	12.1
		LV	438		438		* 1.202	223.0	LOS F	46.2	329.1	NA	NA	NA	12.1
		HV	9		9		1.202	223.0	LOS F	46.2	329.1	NA	NA	NA	12.1
Appro	ach		1205	2.0	1205	2.0	1.202	103.8	LOS F	46.2	329.1	0.97	1.17	1.70	21.3
North:	Valle	tta Dr													
7	L2	All MCs	452	2.0	452	2.0	0.419	22.9	LOS C	10.7	76.4	0.59	0.76	0.59	45.7
		LV	443		443		0.419	22.9	LOS C	10.7	76.4	NA	NA	NA	45.7
		HV	9		9		0.419	22.9	LOS C	10.7	76.4	NA	NA	NA	45.7
8	T1	All MCs	776	2.0	776	2.0	* 1.099	156.0	LOS F	70.1	498.9	1.00	1.90	2.20	18.2
		LV	760		760		* 1.099	156.0	LOS F	70.1	498.9	NA	NA	NA	18.2
		ΗV	16		16		1.099	156.0	LOS F	70.1	498.9	NA	NA	NA	18.2
9	R2	All MCs	120	2.0	120	2.0	0.340	44.2	LOS D	4.0	28.7	0.78	0.77	0.78	39.3
		LV	118		118		0.340	44.2	LOS D	4.0	28.7	NA	NA	NA	39.3
		ΗV	2		2		0.340	44.2	LOS D	4.0	28.7	NA	NA	NA	39.3
Appro	ach		1347	2.0	1347	2.0	1.099	101.4	LOS F	70.1	498.9	0.84	1.42	1.53	24.2
West:	Old F	Pitt Town	Rd												
10	12		68	20	68	20	0 168	41.0		25	17 5	0.84	0 74	0.84	36.5
10	LZ		67	2.0	67	2.0	0.100	-+1.0 ⊿1 ∩		2.5	17.5	0.0 4 ΝΔ	0.74 ΝΔ	0.04 NA	36.5
		LV HV	1		1		0.168	41 N		2.5	17.5	NΔ	NA	NΔ	36.5
11	Т1		040	20	010	20	* 1 102	152.6		0 /1 Q	207 5	1 00	1 72	2 20	17.5
	11		940 024	∠.0	940 021	2.0	↑ 1.102 ★ 1.102	100.0		41.0 ∕11 Ω	291.0 207 F	1.00 NIA	1.73 NIA	2.29 NA	17.5
		LV HV	ا <i>ح</i> و 10		ا <u>ح</u> و 10		1 102	153.6		41.8	297.5	NΔ	NA	NΔ	17.5
			10		10		1.102	.50.0	2001		201.0		1 1/ 1	1.0.1	

12	R2	All MCs	179	0.0	179	0.0	0.571	35.8	LOS D	5.1	36.0	0.95	0.80	0.95	40.6
		LV	179		179		0.571	35.8	LOS D	5.1	36.0	NA	NA	NA	40.6
		HV	0		0		-	-	-	-	-	NA	NA	NA	-
Appro	ach		1187	1.7	1187	1.7	1.102	129.3	LOS F	41.8	297.5	0.98	1.53	2.00	19.8
All Ve	hicles		4286	1.9	4286	1.9	1.202	100.6	LOS F	70.1	498.9	0.90	1.29	1.63	23.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian M	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of <i>i</i> Service	AVERAGE QUE [Ped	BACK OF UE Dist]	Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed	
South Mount	pea/n Carmal D	pea/n	sec	_	ped	m	_	_	sec	m	m/sec	
South. Mount		Л										
P1 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	193.1	200.0	1.04	
East: Old Pitt	ſown Rd											
P2 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	193.1	200.0	1.04	
North: Valletta	Dr											
P3 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	193.1	200.0	1.04	
West: Old Pitt	Town Rd											
P4 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	193.1	200.0	1.04	
All Pedestrians	50	211	39.3	LOS D	0.1	0.1	0.94	0.94	193.1	200.0	1.04	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:08 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_AM_2036 +Dev + Slip (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: Future Conditions 1

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 85 seconds (Site Optimum Cycle Time - Minimum Delay)

Intersection Performance - Hourly Val	ues			
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	27.9 4159.8 149.1 55.3 0.50 4.50 1.98	3.8 km/h 40.0 ped-km/h 10.6 ped-h/h	26.6 km/h 5031.8 pers-km/h 189.5 pers-h/h
Demand Flaure (Tatal)	v a h /h	4070	200 mod/h	5000 mare/h
Arrival Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h % % % veh/h	4072 4072 1.9 1.008 -10.7 4039	0.059	5086 pers/n
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC)	veh-h/h sec sec	76.06 67.2 113.9	2.04 ped-h/h 36.8 sec	93.32 pers-h/h 66.0 sec
Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average)	sec sec sec sec	113.9 1.8 65.4 54.1	36.8 sec	113.9 sec
Intersection Level of Service (LOS)		LOS E	LOS D	
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total)	veh m veh/h	60.6 431.7 0.53 4999 1.22	186 ped/h	6185 pers/h
Proportion Queued Performance Index		0.93 396.5	0.93 0.93 11.6	0.93 408.1
Cost (Total)	\$/b	6379 17	305 02 \$/h	6684 19 \$/b
Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	L/h kg/h kg/h kg/h kg/h	454.6 1073.3 0.097 1.02 1.058	505.02 ¢m	0004.13 9/11

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 2 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 0.0% 5.1% 0.4%

Intersection Performance - Annual Va	lues			
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons
Demand Flows (Total)	veh/y	1,954,560	96,000 ped/y	2,441,472 pers/y
Delay (Total)	veh-h/y	36,509	981 ped-h/y	44,792 pers-h/y

Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh-km/y veh-h/y	2,399,454 1,996,702 71,553	89,410 ped/y 19,200 ped-km/y 5,084 ped-h/y	2,968,754 pers/y 2,415,243 pers-km/y 90,948 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	3,062,003 218,191 515,160 47 489 508	146,407 \$/y	3,208,410 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:09 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_AM_2036 +Dev + Slip (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: Future Conditions 1

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 85 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehic	le M	ovemen	t Perfo	rma	nce										
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H Total	lows H\/1	H [Total]	IOWS	Satn	Delay	Service	Qi [\/eh	ueue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		rtato	Cycleo	km/h
South	Mou	nt Carme	l Dr												
1	L2	All MCs	83	2.0	83	2.0	0.263	21.0	LOS C	5.7	40.5	0.68	0.63	0.68	39.3
		LV	81		81		0.263	21.0	LOS C	5.7	40.5	NA	NA	NA	39.3
		ΗV	2		2		0.263	21.0	LOS C	5.7	40.5	NA	NA	NA	39.3
2	T1	All MCs	353	2.0	353	2.0	0.263	16.4	LOS B	5.8	41.3	0.68	0.59	0.68	40.6
		LV	346		346		0.263	16.4	LOS B	5.8	41.3	NA	NA	NA	40.6
		ΗV	7		7		0.263	16.4	LOS B	5.8	41.3	NA	NA	NA	40.6
3	R2	All MCs	83	2.0	83	2.0	0.897	58.1	LOS E	4.0	28.7	1.00	1.04	1.73	27.6
		LV	81		81		0.897	58.1	LOS E	4.0	28.7	NA	NA	NA	27.6
		ΗV	2		2		0.897	58.1	LOS E	4.0	28.7	NA	NA	NA	27.6
Appro	ach		519	2.0	519	2.0	0.897	23.8	LOS C	5.8	41.3	0.73	0.67	0.85	37.6
East:	Old P	itt Town F	Rd												
4	L2	All MCs	83	2.0	83	2.0	0.529	45.7	LOS D	10.2	72.3	0.89	0.77	0.89	39.5
		LV	81		81		0.529	45.7	LOS D	10.2	72.3	NA	NA	NA	39.5
		HV	2		2		0.529	45.7	LOS D	10.2	72.3	NA	NA	NA	39.5
5	T1	All MCs	637	2.0	637	2.0	0.529	20.6	LOSIC	13.3	94.8	0.82	0.72	0.82	43.8
	• •	LV	624		624	2.0	0.529	20.6	LOS C	13.3	94.8	NA	NA	NA	43.8
		ΗV	13		13		0.529	20.6	LOS C	13.3	94.8	NA	NA	NA	43.8
6	R2	All MCs	425	20	425	20	*0.986	89.2	LOSE	13.9	99.3	1 00	1.36	2 16	24.0
	1.12	IV	417	2.0	417	2.0	* 0.986	89.2	LOSE	13.9	99.3	NA	NA	NA	24.0
		HV	9				0.986	89.2	LOS F	13.9	99.3	NA	NA	NA	24.0
Appro	ach		1145	2.0	1145	2.0	0.986	47.9	LOS D	13.9	99.3	0.89	0.96	1.32	33.3
North	Valla	tta Dr													
North.	valle		100	~ ~	400	0.0	0.000	07.5	100 5	00.0	400.0	4 00	4.07	4 70	
1	L2		429	2.0	429	2.0	0.969	67.5	LOSE	23.0	163.9	1.00	1.27	1.79	26.3
		LV	420		420		0.969	67.5	LOSE	23.0	163.9	NA	NA	NA	26.3
		HV	9		9		0.969	67.5	LUSE	23.0	163.9	INA	INA (= 2	NA	20.3
8	T1	All MCs	737	2.0	737	2.0	* 1.008	113.9	LOS F	60.6	431.7	1.00	1.78	2.01	21.0
		LV	722		722		* 1.008	113.9	LOSF	60.6	431.7	NA	NA	NA	21.0
		HV	15		15		1.008	113.9	LOSF	60.6	431.7	NA	NA	NA	21.0
9	R2	All MCs	114	2.0	114	2.0	0.300	37.2	LOS D	3.5	24.7	0.75	0.74	0.75	38.4
		LV	112		112		0.300	37.2	LOS D	3.5	24.7	NA	NA	NA	38.4
		HV	2	~ ~	2		0.300	37.2	LOS D	3.5	24.7	NA	NA	NA	38.4
Appro	ach		1280	2.0	1280	2.0	1.008	91.5	LOSF	60.6	431.7	0.98	1.52	1.83	23.5
West:	Old F	Pitt Town I	Rd												
10	L2	All MCs	65	2.0	65	2.0	0.151	33.6	LOS C	2.2	15.4	0.83	0.74	0.83	37.6
		LV	64		64		0.151	33.6	LOS C	2.2	15.4	NA	NA	NA	37.6
		ΗV	1		1		0.151	33.6	LOS C	2.2	15.4	NA	NA	NA	37.6
11	T1	All MCs	893	2.0	893	2.0	*0.986	82.9	LOS F	30.8	219.1	1.00	1.50	1.92	25.5
		LV	875		875		*0.986	82.9	LOS F	30.8	219.1	NA	NA	NA	25.5
		ΗV	18		18		0.986	82.9	LOS F	30.8	219.1	NA	NA	NA	25.5

12	R2	All MCs	170	0.0	170	0.0	0.953	78.2	LOS E	10.6	73.9	1.00	1.29	2.00	25.9
		LV	170		170		0.953	78.2	LOS E	10.6	73.9	NA	NA	NA	25.9
		HV	0		0		-	-	-	-	-	NA	NA	NA	-
Appro	ach		1128	1.7	1128	1.7	0.986	79.3	LOS E	30.8	219.1	0.99	1.42	1.87	26.0
All Ve	hicles		4072	1.9	4072	1.9	1.008	67.2	LOS E	60.6	431.7	0.93	1.23	1.57	27.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian M	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of <i>A</i> Service	AVERAGE QUE [Ped	BACK OF UE Dist]	Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed	
	ped/h	ped/h	sec		ped	m			sec	m	m/sec	
South: Mount	Carmel D)r										
P1 Full	50	50	36.8	LOS D	0.1	0.1	0.93	0.93	190.6	200.0	1.05	
East: Old Pitt	Town Rd											
P2 Full	50	50	36.8	LOS D	0.1	0.1	0.93	0.93	190.6	200.0	1.05	
North: Valletta	Dr											
P3 Full	50	50	36.8	LOS D	0.1	0.1	0.93	0.93	190.6	200.0	1.05	
West: Old Pitt	Town Rd											
P4 Full	50	50	36.8	LOS D	0.1	0.1	0.93	0.93	190.6	200.0	1.05	
All Pedestrians	50	200	36.8	LOS D	0.1	0.1	0.93	0.93	190.6	200.0	1.05	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:09 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_PM_2036 + Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum Delay)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons						
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	38.3 4395.7 114.9 60.0 0.64 5.98 1.57	3.8 km/h 42.1 ped-km/h 11.0 ped-h/h	35.7 km/h 5316.9 pers-km/h 148.8 pers-h/h						
	1.4	4005	044	F077 //						
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	4305 4305 2.0 2.0 0.934 -3.7 4607	211 ped/h 0.058	5377 pers/h						
		40.00	0.04	50.45 m and h /h						
Control Delay (Iotal) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average)	ven-n/n sec sec sec sec	42.62 35.6 56.3 56.3 1.4	2.01 ped-n/n 34.3 sec 34.3 sec	53.15 pers-n/n 35.6 sec 56.3 sec						
Stop-Line Delay (Àverage) Idling Time (Average) Intersection Level of Service (LOS)	Sec Sec	34.2 26.8 LOS D	LOS D							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	29.1 207.5 0.25 4089 0.95 0.94 308.1	195 ped/h 0.93 0.93 12.1	5102 pers/h 0.95 0.94 320.2						
	ф /I-	5454 70	040.00 #//-							
Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/n L/h kg/h kg/h kg/h kg/h	5154.78 439.0 1036.8 0.092 1.14 1.124	310.88 \$/N	5471.65 \$/N						

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 53.1% 4.0% 0.0%

Intersection Performance - Annual Va	Intersection Performance - Annual Values										
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons							
Demand Flows (Total)	veh/y	2,066,526	101,053 ped/y	2,580,884 pers/y							
Delay (Total)	veh-h/y	20,457	963 ped-h/y	25,512 pers-h/y							

Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh-km/y veh-h/y	1,962,744 2,109,923 55,132	93,679 ped/y 20,211 ped-km/y 5,281 ped-h/y	2,448,972 pers/y 2,552,119 pers-km/y 71,440 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	2,474,293 210,716 497,658 44 548 548	152,102 \$/y	2,626,394 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:11 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_PM_2036 + Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehic	le M	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Den	nand	Ar	rival	Deg.	Aver.	Level of	95% I	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	- Total	lows 山\/1	H Intel]	lows µ\/1	Satn	Delay	Service	Ql [\/eh	Jeue Diet 1	Que	Stop Rate	No. of	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	Mou	nt Carme	l Dr												
1	L2	All MCs	87	2.0	87	2.0	0.555	33.6	LOS C	9.5	67.7	0.92	0.79	0.92	39.2
		LV	86		86		0.555	33.6	LOS C	9.5	67.7	NA	NA	NA	39.2
		HV	2		2		0.555	33.6	LOS C	9.5	67.7	NA	NA	NA	39.2
2	T1	All MCs	469	2.0	469	2.0	0.555	28.0	LOS C	9.7	68.7	0.92	0.78	0.92	40.9
		LV	460		460		0.555	28.0	LOS C	9.7	68.7	NA	NA	NA	40.9
		HV	9		9		0.555	28.0	LOS C	9.7	68.7	NA	NA	NA	40.9
3	R2	All MCs	87	2.0	87	2.0	0.886	56.3	LOS E	4.0	28.8	1.00	0.98	1.61	30.6
		LV	86		86		0.886	56.3	LOS E	4.0	28.8	NA	NA	NA	30.6
		HV	2		2		0.886	56.3	LOS E	4.0	28.8	NA	NA	NA	30.6
Appro	ach		644	2.0	644	2.0	0.886	32.6	LOS C	9.7	68.7	0.93	0.81	1.01	38.9
Fast (Old P	itt Town R	2d												
1	12		87	2.0	87	20	0 740	26.6	1.05.0	20.5	1/6 3	0.80	0.82	0.01	12.0
4	LZ		86	2.0	86	2.0	0.740	20.0		20.5	140.3	0.09 NA	0.02 NA	0.91 NA	42.9
			2		2		0.740	20.0		20.5	146.3				42.5
E	Т1		1155	2.0	1155	2.0	0.740	20.0		20.0	147.0	0.90	0.91	0.01	44.6
5	11		1120	2.0	1122	2.0	0.740	20.0		20.7	147.2	0.69 NA	0.01	0.91	44.0
			23		23		0.740	20.0		20.7	147.2				44.0
6	D 0		20	2.0	250	2.0	0.140	20.0		44.0	70.5	1.00	0.05	4 40	27.0
0	R2		308	2.0	358	2.0	* 0.814	32.9		11.0	70.5 70.5	1.00	0.95	1.18 NA	37.9
			301		551		* 0.014 0.814	32.9		11.0	78.5	NΔ	NΑ	NΑ	37.9
Annro	ach	110	1600	20	1600	20	0.014	23.9		20.7	147.2	0.92	0.85	0.97	42.8
7.00	aon		1000	2.0	1000	2.0	0.011	20.0	200 0	20.1		0.02	0.00	0.01	12.0
North:	Valle	tta Dr													
7	L2	All MCs	224	2.0	224	2.0	0.466	32.8	LOS C	7.5	53.5	0.89	0.80	0.89	37.9
		LV	220		220		0.466	32.8	LOS C	7.5	53.5	NA	NA	NA	37.9
		HV	4		4		0.466	32.8	LOS C	7.5	53.5	NA	NA	NA	37.9
8	T1	All MCs	439	2.0	439	2.0	*0.889	44.8	LOS D	20.1	143.3	1.00	1.08	1.31	35.7
		LV	430		430		*0.889	44.8	LOS D	20.1	143.3	NA	NA	NA	35.7
		ΗV	9		9		0.889	44.8	LOS D	20.1	143.3	NA	NA	NA	35.7
9	R2	All MCs	72	2.0	72	2.0	0.411	44.7	LOS D	2.7	19.5	0.96	0.77	0.96	34.8
		LV	70		70		0.411	44.7	LOS D	2.7	19.5	NA	NA	NA	34.8
		HV	1		1		0.411	44.7	LOS D	2.7	19.5	NA	NA	NA	34.8
Appro	ach		735	2.0	735	2.0	0.889	41.2	LOS D	20.1	143.3	0.96	0.97	1.15	36.2
West:	Old F	Pitt Town F	Rd												
10	L2	All MCs	99	2.0	99	2.0	0.166	29.9	LOS C	2.8	19.7	0.75	0.74	0.75	40.6
		LV	97		97		0.166	29.9	LOS C	2.8	19.7	NA	NA	NA	40.6
		ΗV	2		2		0.166	29.9	LOS C	2.8	19.7	NA	NA	NA	40.6
11	T1	All MCs	1143	2.0	1143	2.0	*0.934	51.4	LOS D	29.1	207.5	1.00	1.20	1.41	33.7
		LV	1120		1120		* 0.934	51.4	LOS D	29.1	207.5	NA	NA	NA	33.7
		HV	23		23		0.934	51.4	LOS D	29.1	207.5	NA	NA	NA	33.7

12	R2	All MCs	84	0.0	84	0.0	0.306	27.3	LOS C	1.5	10.8	0.85	0.75	0.85	43.9
		LV	84		84		0.306	27.3	LOS C	1.5	10.8	NA	NA	NA	43.9
		HV	0		0		-	-	-	-	-	NA	NA	NA	-
Approa	ach		1326	1.9	1326	1.9	0.934	48.3	LOS D	29.1	207.5	0.97	1.14	1.32	34.7
All Vel	nicles		4305	2.0	4305	2.0	0.934	35.6	LOS D	29.1	207.5	0.94	0.95	1.11	38.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian M	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of <i>i</i> Service	AVERAGE QUE [Ped	BACK OF UE Dist]	Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed	
o	ped/h	ped/h	sec	_	ped	m	_	_	sec	m	m/sec	
South: Mount	Carmel L	Dr										
P1 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
East: Old Pitt	Fown Rd											
P2 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
North: Valletta	Dr											
P3 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
West: Old Pitt	Town Rd	l										
P4 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	
All Pedestrians	50	211	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:11 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_PM_2036 + Dev + Slip (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum Delay)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons						
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	41.6 4397.7 105.6 60.0 0.69 6.60 1.44	3.8 km/h 42.1 ped-km/h 11.0 ped-h/h	38.6 km/h 5319.3 pers-km/h 137.7 pers-h/h						
Demond Flows (Total)	veb/b	4205	011 mad/h	5077 mana/h						
Arrival Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h % % % veh/h	4305 4305 2.0 2.0 0.807 11.5 5332	0.058	5377 pers/n						
Control Delay (Total)	veh-h/h	32.07	2.01 ned-h/h	40.49 pers-b/b						
Control Delay (Votal) Control Delay (Average) Control Delay (Worst Lane by MC)	sec sec	26.8 49.1	34.3 sec	27.1 sec						
Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average)	sec sec sec sec	49.1 1.4 25.4 20.0	34.3 sec	49.1 sec						
Intersection Level of Service (LOS)		LOS C	LOS D							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane)	veh m	22.6 160.6 0.20								
Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh/h	3684 0.86 0.92 272.6	195 ped/h 0.93 0.93 12.1	4615 pers/h 0.86 0.92 284.7						
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	4792.89 423.6 1000.5 0.088 1.12 1.092	316.88 \$/h	5109.77 \$/h						

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 8.4 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Main (Timing-Capacity) Iterations: 10.4% 3.6% 8.4%

Intersection Performance - Annual Va	Intersection Performance - Annual Values										
Performance Measure	Vehicles:	All MCs	Pedestrians	Persons							
Demand Flows (Total)	veh/y	2,066,527	101,053 ped/y	2,580,884 pers/y							
Delay (Total)	veh-h/y	15,395	963 ped-h/y	19,436 pers-h/y							

Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh-km/y veh-h/y	1,768,093 2,110,888 50,683	93,679 ped/y 20,211 ped-km/y 5,281 ped-h/y	2,215,391 pers/y 2,553,277 pers-km/y 66,101 pers-h/y
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	2,300,589 203,329 480,258 42 536 524	152,102 \$/y	2,452,690 \$/y

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:12 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_PM_2036 + Dev + Slip (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site

Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 80 seconds (Site Optimum Cycle Time - Minimum Delay)

Vehicle Movement Performance															
Mov	Turn	Mov	Den	nand	Ar	rival	Deg.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	H Intel]	lows H\/1	H Total	lows H\/1	Satn	Delay	Service	Qı [\/eh	Jeue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		- Tato	0,000	km/h
South	Mou	nt Carme	l Dr												
1	L2	All MCs	87	2.0	87	2.0	0.507	31.6	LOS C	9.1	65.1	0.89	0.77	0.89	40.0
		LV	86		86		0.507	31.6	LOS C	9.1	65.1	NA	NA	NA	40.0
		HV	2		2		0.507	31.6	LOS C	9.1	65.1	NA	NA	NA	40.0
2	T1	All MCs	469	2.0	469	2.0	0.507	26.0	LOS C	9.3	66.1	0.89	0.75	0.89	41.8
		LV	460		460		0.507	26.0	LOS C	9.3	66.1	NA	NA	NA	41.8
		ΗV	9		9		0.507	26.0	LOS C	9.3	66.1	NA	NA	NA	41.8
3	R2	All MCs	87	2.0	87	2.0	*0.687	49.1	LOS D	3.7	26.4	1.00	0.85	1.18	32.6
		LV	86		86		*0.687	49.1	LOS D	3.7	26.4	NA	NA	NA	32.6
		HV	2		2		0.687	49.1	LOS D	3.7	26.4	NA	NA	NA	32.6
Appro	ach		644	2.0	644	2.0	0.687	29.9	LOS C	9.3	66.1	0.90	0.77	0.93	40.0
East: (Old P	itt Town R	Rd												
4	L2	All MCs	87	2.0	87	2.0	0.785	30.3	LOS C	22.4	159.6	0.93	0.88	1.00	41.2
		LV	86		86		0.785	30.3	LOS C	22.4	159.6	NA	NA	NA	41.2
		ΗV	2		2		0.785	30.3	LOS C	22.4	159.6	NA	NA	NA	41.2
5	T1	All MCs	1155	2.0	1155	2.0	0.785	24.5	LOS C	22.6	160.6	0.93	0.88	1.00	42.7
		LV	1132		1132		0.785	24.5	LOS C	22.6	160.6	NA	NA	NA	42.7
		ΗV	23		23		0.785	24.5	LOS C	22.6	160.6	NA	NA	NA	42.7
6	R2	All MCs	358	2.0	358	2.0	*0.549	21.9	LOS C	3.6	25.7	0.94	0.80	0.94	42.8
		LV	351		351		*0.549	21.9	LOS C	3.6	25.7	NA	NA	NA	42.8
		ΗV	7		7		0.549	21.9	LOS C	3.6	25.7	NA	NA	NA	42.8
Appro	ach		1600	2.0	1600	2.0	0.785	24.2	LOS C	22.6	160.6	0.93	0.86	0.98	42.6
North:	Valle	tta Dr													
7	L2	All MCs	224	2.0	224	2.0	0.251	13.0	LOS B	4.0	28.2	0.58	0.71	0.58	48.0
		IV	220		220		0.251	13.0	LOSB	4.0	28.2	NA	NA	NA	48.0
		HV	4		•		0.251	13.0	LOS B	4.0	28.2	NA	NA	NA	48.0
8	T1	All MCs	439	20	439	20	0 807	35.0	10S C	17.6	125.5	0.99	0.95	1 13	39.0
		LV	430		430		0.807	35.0	LOS C	17.6	125.5	NA	NA	NA	39.0
		HV	9		9		0.807	35.0	LOS C	17.6	125.5	NA	NA	NA	39.0
9	R2	All MCs	72	20	72	20	0.365	40.6	LOSID	2.6	18 7	0.92	0 77	0.92	35.8
		IV	70		70		0.365	40.6		2.6	18.7	NA	NA	NA	35.8
		HV	1		1		0.365	40.6		2.6	18.7	NA	NA	NA	35.8
Appro	ach		735	2.0	735	2.0	0.807	28.8	LOS C	17.6	125.5	0.86	0.86	0.94	41.0
West.		Pitt Town F	24												
10			.u 00	20	00	20	0 144	22.2	1.05.0	26	10.0	0.60	0.72	0.60	12.0
10	LZ		99	2.0	99	∠.0	0.144	∠ა.პ ევე		2.0	10.2	0.09	0.73	0.09	42.0
			97 ว		97		0.144	∠3.3 22.2		2.0 2.6	10.2 19.2				4∠.U ∕\2 ∩
44	T 4		2	0.0	2	0.0	0.144	23.3		2.0	10.2				42.0
11	11		1143	2.0	1143	2.0	* 0.795	27.9		21.6	154.0	0.96	0.91	1.04	41.5
			1120		1120		* 0.795	27.9		21.6	154.0	NA	NA	NA	41.5
		HV	23		23		0.795	27.9	LUS C	21.6	154.0	NA	NA	NA	41.5

12	R2	All MCs	84	0.0	84	0.0	0.318	24.1	LOS C	1.6	11.4	0.88	0.75	0.88	43.2
		LV	84		84		0.318	24.1	LOS C	1.6	11.4	NA	NA	NA	43.2
		HV	0		0		-	-	-	-	-	NA	NA	NA	-
Approa	ich		1326	1.9	1326	1.9	0.795	27.3	LOS C	21.6	154.0	0.93	0.89	1.01	41.7
All Vehi	icles		4305	2.0	4305	2.0	0.807	26.8	LOS C	22.6	160.6	0.92	0.86	0.97	41.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of <i>i</i> Service	AVERAGE QUE [Ped	BACK OF UE Dist]	Prop. Que	Eff. Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/n	ped/h	sec	_	ped	m	_	_	sec	m	m/sec
South: Mount	Carmel L)r									
P1 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
East: Old Pitt	ſown Rd										
P2 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
North: Valletta	Dr										
P3 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
West: Old Pitt	Town Rd										
P4 Full	50	53	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06
All Pedestrians	50	211	34.3	LOS D	0.1	0.1	0.93	0.93	188.1	200.0	1.06

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:12 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Boundary_Red Gables_AM_2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	54.9 810.2 14.8 60.0 0.92 9.06 1.09	54.9 km/h 972.2 pers-km/h 17.7 pers-h/h							
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % % veh/h	799 799 2.0 2.0 0.246 225.1 3247	959 pers/h							
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average)	veh-h/h sec sec sec sec sec sec	0.84 3.8 8.3 12.4 3.2 0.6 0.1	1.00 pers-h/h 3.8 sec 12.4 sec							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	NA 1.1 8.1 0.01 274 0.34 0.20 17.1	328 pers/h 0.34 0.20 17.1							
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	679.01 62.6 148.1 0.012 0.17 0.154	679.01 \$/h							

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 60.9% 21.6% 0.0%

Intersection Performance - Annual Values									
Performance Measure	Vehicles:	All MCs	Persons						
Demand Flows (Total)	veh/y	383,495	460,194 pers/y						
Delay (Total)	veh-h/y	401	481 pers-h/y						

Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh-km/y veh-h/y	131,323 388,899 7,081	157,587 pers/y 466,678 pers-km/y 8,498 pers-h/y
Cost (Total)	\$/y	325,923	325,923 \$/y
Fuel Consumption (Total)	L/y	30,070	
Carbon Dioxide (Total)	kg/y	71,082	
Hydrocarbons (Total)	kg/y	6	
Carbon Monoxide (Total)	kg/y	84	
NOx (Total)	kg/y	74	
· · ·	••		

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:13 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Boundary_Red Gables_AM_2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance															
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	ack Of	Prop.	Eff.	Aver.	Aver.
		Class	F Total	IOWS HV L	FI [TotaL	ows HV_1_	Sath	Delay	Service	Qu [Veh_	eue Dist L	Que	Stop Rate_	No. of Cvcles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South:	Bour	ndary Rd													
2	T1	All MCs	123	2.0	123	2.0	0.064	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
		LV	121		121		0.064	0.0	LOS A	0.0	0.0	NA	NA	NA	60.0
		HV	2		2		0.064	0.0	LOS A	0.0	0.0	NA	NA	NA	60.0
3	R2	All MCs	72	2.0	72	2.0	0.050	6.3	LOS A	0.2	1.6	0.33	0.57	0.33	51.7
		LV	70		70		0.050	6.3	LOS A	0.2	1.6	NA	NA	NA	51.8
		HV	1		1		0.050	7.3	LOS A	0.2	1.6	NA	NA	NA	51.0
Approa	ach		195	2.0	195	2.0	0.064	2.3	NA	0.2	1.6	0.12	0.21	0.12	56.7
East: (Catara	act Rd													
4	L2	All MCs	326	2.0	326	2.0	0.246	6.5	LOS A	1.1	8.1	0.36	0.60	0.36	51.7
		LV	320		320		0.246	6.5	LOS A	1.1	8.1	NA	NA	NA	51.7
		ΗV	7		7		0.246	7.7	LOS A	1.1	8.1	NA	NA	NA	50.9
6	R2	All MCs	46	2.0	46	2.0	0.065	8.3	LOS A	0.2	1.7	0.48	0.70	0.48	50.5
		LV	45		45		0.065	8.2	LOS A	0.2	1.7	NA	NA	NA	50.6
		HV	1		1		0.065	12.4	LOS B	0.2	1.7	NA	NA	NA	47.8
Approa	ach		373	2.0	373	2.0	0.246	6.7	LOS A	1.1	8.1	0.37	0.61	0.37	51.6
North:	Boun	idary Rd													
7	L2	All MCs	9	2.0	9	2.0	0.121	5.6	LOS A	0.0	0.0	0.00	0.02	0.00	57.2
		LV	9		9		0.121	5.6	LOS A	0.0	0.0	NA	NA	NA	57.2
		HV	0		0		0.121	5.6	LOS A	0.0	0.0	NA	NA	NA	57.2
8	T1	All MCs	222	2.0	222	2.0	0.121	0.0	LOS A	0.0	0.0	0.00	0.02	0.00	59.7
		LV	218		218		0.121	0.0	LOS A	0.0	0.0	NA	NA	NA	59.7
		ΗV	4		4		0.121	0.0	LOS A	0.0	0.0	NA	NA	NA	59.7
Approa	ach		232	2.0	232	2.0	0.121	0.3	NA	0.0	0.0	0.00	0.02	0.00	59.6
All Veh	nicles		799	2.0	799	2.0	0.246	3.8	NA	1.1	8.1	0.20	0.34	0.20	54.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:13 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Boundary_Red Gables_PM_2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	56.3 1197.8 21.3 60.0 0.94 9.32 1.06	56.3 km/h 1437.4 pers-km/h 25.5 pers-h/h							
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % % veh/h	1182 1182 2.0 2.0 0.281 249.3 4214	1419 pers/h							
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	0.88 2.7 19.3 53.6 2.1 0.6 0.2 NA	1.05 pers-h/h 2.7 sec 53.6 sec							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	1.2 8.9 0.00 271 0.23 0.14 23.7	325 pers/h 0.23 0.14 23.7							
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	967.18 86.1 203.5 0.016 0.24 0.200	967.18 \$/h							

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 86.5% 22.1% 0.0%

Intersection Performance - Annual Values										
Performance Measure	Vehicles:	All MCs	Persons							
Demand Flows (Total)	veh/y	567,411	680,893 pers/y							
Delay (Total)	veh-h/y	420	504 pers-h/y							

Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh-km/y veh-h/y	129,926 574,959 10,205	155,911 pers/y 689,951 pers-km/y 12,246 pers-h/y
Cost (Total)	\$/y	464,246	464,246 \$/y
Fuel Consumption (Total)	L/y	41,315	
Carbon Dioxide (Total)	kg/y	97,690	
Hydrocarbons (Total)	kg/y	8	
Carbon Monoxide (Total)	kg/y	117	
NOx (Total)	kg/y	96	
· · ·			

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:13 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Boundary_Red Gables_PM_2036 (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance															
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class	FI [Total	IOWS H\/ 1	FI [Total]	ows H\/ 1	Satn	Delay	Service	Qu [\/eh	eue Dist 1	Que	Stop Rate	No. of Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m		- Tiato		km/h
South: Boundary Rd															
2	T1	All MCs	540	2.0	540	2.0	0.281	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
		LV	529		529		0.281	0.1	LOS A	0.0	0.0	NA	NA	NA	59.8
		HV	11		11		0.281	0.1	LOS A	0.0	0.0	NA	NA	NA	59.8
3	R2	All MCs	346	2.0	346	2.0	0.243	6.5	LOS A	1.2	8.9	0.39	0.60	0.39	51.6
		LV	339		339		0.243	6.5	LOS A	1.2	8.9	NA	NA	NA	51.6
		HV	7		7		0.243	7.8	LOS A	1.2	8.9	NA	NA	NA	50.6
Approa	ach		886	2.0	886	2.0	0.281	2.6	NA	1.2	8.9	0.15	0.24	0.15	56.3
East: 0	Catara	act Rd													
4	L2	All MCs	36	2.0	36	2.0	0.026	6.2	LOS A	0.1	0.7	0.29	0.56	0.29	51.9
		LV	35		35		0.026	6.2	LOS A	0.1	0.7	NA	NA	NA	52.0
		HV	1		1		0.026	7.0	LOS A	0.1	0.7	NA	NA	NA	51.3
6	R2	All MCs	22	2.0	22	2.0	0.089	19.3	LOS C	0.3	2.1	0.80	0.92	0.80	43.8
		LV	22		22		0.089	18.6	LOS C	0.3	2.1	NA	NA	NA	44.2
		HV	0		0		0.089	53.6	LOS F	0.3	2.1	NA	NA	NA	31.0
Approa	ach		58	2.0	58	2.0	0.089	11.2	LOS B	0.3	2.1	0.48	0.70	0.48	48.5
North:	Bour	ndary Rd													
7	L2	All MCs	36	2.0	36	2.0	0.125	5.6	LOS A	0.0	0.0	0.00	0.09	0.00	56.6
		LV	35		35		0.125	5.6	LOS A	0.0	0.0	NA	NA	NA	56.6
		HV	1		1		0.125	5.6	LOS A	0.0	0.0	NA	NA	NA	56.6
8	T1	All MCs	202	2.0	202	2.0	0.125	0.0	LOS A	0.0	0.0	0.00	0.09	0.00	59.1
		LV	198		198		0.125	0.0	LOS A	0.0	0.0	NA	NA	NA	59.1
		ΗV	4		4		0.125	0.0	LOS A	0.0	0.0	NA	NA	NA	59.1
Approa	ach		238	2.0	238	2.0	0.125	0.9	NA	0.0	0.0	0.00	0.09	0.00	58.7
All Veh	nicles		1182	2.0	1182	2.0	0.281	2.7	NA	1.2	8.9	0.14	0.23	0.14	56.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:13 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Boundary_Red Gables_AM_2036 +Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Values										
Performance Measure	Vehicles:	All MCs	Persons							
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	54.5 925.6 17.0 60.0 0.91 8.97 1.10	54.5 km/h 1110.7 pers-km/h 20.4 pers-h/h							
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % veh/h	913 913 2.0 2.0 0.315 153.9 2896	1095 pers/h							
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	1.05 4.1 8.5 13.0 3.5 0.7 0.1 NA	1.26 pers-h/h 4.1 sec 13.0 sec							
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	1.6 11.0 0.01 344 0.38 0.23 20.1	412 pers/h 0.38 0.23 20.1							
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	784.60 73.0 172.6 0.014 0.20 0.183	784.60 \$/h							

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 62.0% 21.6% 0.0%

Intersection Performance - Annual Values						
Performance Measure	Vehicles:	All MCs	Persons			
Demand Flows (Total)	veh/y	438,063	525,676 pers/y			
Delay (Total)	veh-h/y	504	605 pers-h/y			

Effective Stops (Total) Travel Distance (Total) Travel Time (Total)	veh/y veh-km/y veh-h/y	164,966 444,298 8,159	197,959 pers/y 533,157 pers-km/y 9,791 pers-h/y
Cost (Total)	\$/y	376,608	376,608 \$/y
Fuel Consumption (Total)	L/y	35,052	
Carbon Dioxide (Total)	kg/y	82,853	
Hydrocarbons (Total)	kg/y	7	
Carbon Monoxide (Total)	kg/y	97	
NOx (Total)	kg/y	88	

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:14 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Boundary_Red Gables_AM_2036 +Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Give-Way (Two-Way)

Vehic	Vehicle Movement Performance														
Mov	Turn	Mov	Dem	nand	Ar	rival	Deg.	Aver.	Level of	95% E	Back Of	Prop.	Eff.	Aver.	Aver.
U		Class	Total	IOWS HV 1	۲۱ Total آ	ows HV 1	Sath	Delay	Service	Qu [Veh	eue Dist 1	Que	Stop Rate	NO. OT Cvcles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	Bour	ndary Rd													
2	T1	All MCs	123	2.0	123	2.0	0.064	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
		LV	121		121		0.064	0.0	LOS A	0.0	0.0	NA	NA	NA	60.0
		ΗV	2		2		0.064	0.0	LOS A	0.0	0.0	NA	NA	NA	60.0
3	R2	All MCs	94	2.0	94	2.0	0.065	6.3	LOS A	0.3	2.1	0.34	0.58	0.34	51.7
		LV	92		92		0.065	6.3	LOS A	0.3	2.1	NA	NA	NA	51.7
		HV	2		2		0.065	7.3	LOS A	0.3	2.1	NA	NA	NA	51.0
Appro	ach		217	2.0	217	2.0	0.065	2.7	NA	0.3	2.1	0.15	0.25	0.15	56.1
East: (Catar	act Rd													
4	L2	All MCs	418	2.0	418	2.0	0.315	6.6	LOS A	1.6	11.0	0.38	0.60	0.38	51.7
		LV	410		410		0.315	6.5	LOS A	1.6	11.0	NA	NA	NA	51.7
		ΗV	8		8		0.315	7.9	LOS A	1.6	11.0	NA	NA	NA	50.7
6	R2	All MCs	46	2.0	46	2.0	0.067	8.5	LOS A	0.2	1.8	0.49	0.71	0.49	50.4
		LV	45		45		0.067	8.4	LOS A	0.2	1.8	NA	NA	NA	50.5
		HV	1		1		0.067	13.0	LOS B	0.2	1.8	NA	NA	NA	47.4
Appro	ach		464	2.0	464	2.0	0.315	6.7	LOS A	1.6	11.0	0.39	0.61	0.39	51.5
North:	Bour	idary Rd													
7	L2	All MCs	9	2.0	9	2.0	0.121	5.6	LOS A	0.0	0.0	0.00	0.02	0.00	57.2
		LV	9		9		0.121	5.6	LOS A	0.0	0.0	NA	NA	NA	57.2
		ΗV	0		0		0.121	5.6	LOS A	0.0	0.0	NA	NA	NA	57.2
8	T1	All MCs	222	2.0	222	2.0	0.121	0.0	LOS A	0.0	0.0	0.00	0.02	0.00	59.7
		LV	218		218		0.121	0.0	LOS A	0.0	0.0	NA	NA	NA	59.7
		ΗV	4		4		0.121	0.0	LOS A	0.0	0.0	NA	NA	NA	59.7
Appro	ach		232	2.0	232	2.0	0.121	0.3	NA	0.0	0.0	0.00	0.02	0.00	59.6
All Vel	nicles		913	2.0	913	2.0	0.315	4.1	NA	1.6	11.0	0.23	0.38	0.23	54.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:14 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Boundary_Red Gables_PM_2036 + Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Values						
Performance Measure	Vehicles:	All MCs	Persons			
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed Speed Efficiency Travel Time Index Congestion Coefficient	km/h veh-km/h veh-h/h km/h	55.8 1313.1 23.5 60.0 0.93 9.23 1.07	55.8 km/h 1575.7 pers-km/h 28.2 pers-h/h			
Demand Flows (Total) Arrival Flows (Total) Percent Heavy Vehicles (Demand) Percent Heavy Vehicles (Arrivals) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	veh/h veh/h % % % veh/h	1296 1296 2.0 2.0 0.307 219.2 4221	1555 pers/h			
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane by MC) Control Delay (Worst Movement by MC) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	veh-h/h sec sec sec sec sec sec	1.10 3.1 21.9 66.1 2.4 0.7 0.2 NA	1.33 pers-h/h 3.1 sec 66.1 sec			
95% Back of Queue - Veh (Worst Lane) 95% Back of Queue - Dist (Worst Lane) Ave. Que Storage Ratio (Worst Lane) Effective Stops (Total) Effective Stop Rate Proportion Queued Performance Index	veh m veh/h	1.7 11.8 0.00 341 0.26 0.17 26.6	409 pers/h 0.26 0.17 26.6			
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/h L/h kg/h kg/h kg/h kg/h	1073.28 96.5 228.1 0.018 0.27 0.228	1073.28 \$/h			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand effects.

In Network analysis, Arrival Flows will be reduced if Upstream Capacity Constraint exists.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

Site Model Variability Index (Average value of largest changes in Lane Degrees of Saturation from the third to the last Main (Timing-Capacity) Iterations): 0.0 %

Number of Iterations: 3 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 88.4% 22.1% 0.0%

Intersection Performance - Annual Values						
Performance Measure	Vehicles:	All MCs	Persons			
Demand Flows (Total)	veh/y	621,979	746,375 pers/y			
Delay (Total)	veh-h/y	530	636 pers-h/y			
Effective Stops (Total)	veh/y	163,620	196,344 pers/y			
--	---	---	-------------------	--		
Travel Distance (Total)	veh-km/y	630,275	756,330 pers-km/y			
Travel Time (Total)	veh-h/y	11,289	13,547 pers-h/y			
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	\$/y L/y kg/y kg/y kg/y kg/y	515,176 46,307 109,483 9 131 109	515,176 \$/y			

1 Hours per Year: 480 (Site)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:15 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

MOVEMENT SUMMARY

V Site: 101 [Boundary_Red Gables_PM_2036 + Dev (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.1.200

New Site Site Category: (None) Give-Way (Two-Way)

Vehic	le M	ovement	l Perfo	rma	nce										
Mov Turn M		Mov	Demar	nand	nd Ar	rrival	Deg.	Aver.	Level of	95% Back Of		Prop.	Eff.	Aver.	Aver.
ט ו		Class	Fi [Total	IOWS HV 1	۲۱ Total آ	ows HV 1	Sath	Delay	Service	Qu [Veh	eue Dist 1	Que	Stop Rate	NO. OT Cvcles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South: Boundary Rd															
2	T1	All MCs	540	2.0	540	2.0	0.281	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
		LV	529		529		0.281	0.1	LOS A	0.0	0.0	NA	NA	NA	59.8
		HV	11		11		0.281	0.1	LOS A	0.0	0.0	NA	NA	NA	59.8
3	R2	All MCs	438	2.0	438	2.0	0.307	6.6	LOS A	1.7	11.8	0.41	0.61	0.41	51.5
		LV	429		429		0.307	6.6	LOS A	1.7	11.8	NA	NA	NA	51.5
		HV	9		9		0.307	8.0	LOS A	1.7	11.8	NA	NA	NA	50.5
Approa	ach		978	2.0	978	2.0	0.307	3.0	NA	1.7	11.8	0.18	0.27	0.18	55.8
East: 0	Catara	act Rd													
4	L2	All MCs	58	2.0	58	2.0	0.043	6.2	LOS A	0.2	1.2	0.29	0.56	0.29	51.9
		LV	57		57		0.043	6.2	LOS A	0.2	1.2	NA	NA	NA	51.9
		HV	1		1		0.043	7.0	LOS A	0.2	1.2	NA	NA	NA	51.3
6	R2	All MCs	22	2.0	22	2.0	0.104	21.9	LOS C	0.3	2.3	0.83	0.93	0.83	42.5
		LV	22		22		0.104	21.0	LOS C	0.3	2.3	NA	NA	NA	42.9
		HV	0		0		0.104	66.1	LOS F	0.3	2.3	NA	NA	NA	28.0
Approa	ach		80	2.0	80	2.0	0.104	10.5	LOS B	0.3	2.3	0.44	0.66	0.44	48.9
North:	Bour	ndary Rd													
7	L2	All MCs	36	2.0	36	2.0	0.125	5.6	LOS A	0.0	0.0	0.00	0.09	0.00	56.6
		LV	35		35		0.125	5.6	LOS A	0.0	0.0	NA	NA	NA	56.6
		HV	1		1		0.125	5.6	LOS A	0.0	0.0	NA	NA	NA	56.6
8	T1	All MCs	202	2.0	202	2.0	0.125	0.0	LOS A	0.0	0.0	0.00	0.09	0.00	59.1
		LV	198		198		0.125	0.0	LOS A	0.0	0.0	NA	NA	NA	59.1
		HV	4		4		0.125	0.0	LOS A	0.0	0.0	NA	NA	NA	59.1
Approa	ach		238	2.0	238	2.0	0.125	0.9	NA	0.0	0.0	0.00	0.09	0.00	58.7
All Veh	nicles		1296	2.0	1296	2.0	0.307	3.1	NA	1.7	11.8	0.17	0.26	0.17	55.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 15 December 2022 4:04:15 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 1 [Boundary_Cataract Stage 1_AM Existing (Site Folder: General)]

Staged crossing Stage 1 (Minor Road) at three-way intersection with 5-lane major road. Major road turn lane is treated as a full-length lane. Site Category: (None)

Stop (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Created: Thursday, 15 December 2022 4:06:44 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 2 [Boundary_Cataract Stage 2_AM Existing (Site Folder: General)]

Staged crossing Stage 2 (Median) at three-way intersection with 5-lane major road. Give-way behaviour assumed at Stage 2. Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Created: Thursday, 15 December 2022 4:06:47 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

W Site: 101 [Boundary_Old Pitt Town_AM Existing (Site Folder: General)]

New Site Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Created: Thursday, 15 December 2022 4:06:53 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Boundary_Old Pitt Town_AM 2036 (Site Folder: General)]

New Site Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Created: Thursday, 15 December 2022 4:06:56 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Boundary_Old Pitt Town_AM 2036 + Dev (Site

Folder: General)]

New Site Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Created: Thursday, 15 December 2022 4:06:59 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

V Site: 101 [Old Pitt Town_Valletta_AM_Existing (Site Folder: General)]

New Site Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Old Pitt Town Rd

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Created: Thursday, 15 December 2022 4:07:01 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_AM_2036 (Site Folder: General)]

New Site Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Created: Thursday, 15 December 2022 4:07:05 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

Site: 101v [Old Pitt Town_Valletta_AM_2036 + Slip (Site Folder: General)]

New Site Site Category: (None) Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2022 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Created: Thursday, 15 December 2022 4:07:11 PM Project: Z:\2022 Projects\PT22014 - The Gables Rezoning\SIDRA\PT22014_V2.sip9

▽ Site: 101 [Boundary_Red Gables_AM_2036 (Site Folder: General)]

New Site Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

11. Appendix C - Plans of Potential Development Arrangement

WEST GABLE ILLUSTRAVITIE CONCEPT PLAN_SCENARIO 2

1:10,000 @ A4 0 100 200 300 400 500